The physical and the geometrical properties of simulated cold HI structures

Adriana Gazol and Marco A. Villagran

05/03/2021

Outline

- Introduction
- Analysis tools
- Simulations
- Results
- Discussion
- Conclusions

Introduction

1.What is this paper?

2.Why is this interesting?

3. How is this study carried out?

ISM

ISM

CNM

Objective of the paper

A detailed **statistical analysis** of the possible connection between the general

physical properties, the morphological properties and the geometrical

properties of magnetized CNM-like structures!

Analysis tools

- Shape descriptors
- Kernel density estimations
- Directional Statistics

Shape descriptors

Asphericity

Prolatness

Shape descriptors

Prolatness

 m_k : eigenvalues of $M_{ij} = \sum_k \mu^k x_i^k x_j^k$

$$\overline{m}=rac{1}{3}r_g^2
onumber \ r_g=\sqrt{g_1+g_2+g_3}$$

Shape descriptors

 m_k : eigenvalues of $\ M_{ij} = \sum_k \mu^k x_i^k x_j^k$

$$egin{aligned} \overline{m} &= rac{1}{3} r_g^2 \ r_g &= \sqrt{g_1 + g_2 + g_3} \end{aligned}$$

Credit: Tomruen

Directional statistics

They don't take into consideration the orientation but only the direction $\longrightarrow \theta \in [0, \frac{\pi}{2}]$

$$\overline{R} = (\overline{C}^2 + \overline{S}^2)^{rac{1}{2}} \longrightarrow$$
 measures the concentration of θ values $\overline{R} << 1$ $\overline{R} \sim 1$

$$\overline{C} = rac{1}{n}\sum_{j=1}^n cos heta_j ~~~ \overline{S} = rac{1}{n}\sum_{j=1}^n sin heta_j$$

Simulations

B: initially uniform and // x-axis

Simulations

Each simulation:

- reproduces the thermal conditions of HI gas in the solar neighbourhood
- represents a cubic box with 100 pc by side
- is initially at rest with a uniform density $(2 cm^{-3})$ and temperature (1500K)
- is in the thermally unstable regime according to a cooling function (Wolfire et al.2003)

~ 1500 simulations (300 for each model)

Results

- 1. Physical properties of clumps B, n, βp, Pth, Mrms, M, MArms, MA
- 2. Morphology $\longrightarrow \gamma$, β , A_3 , S_A
- 3. Relative alignments $\longrightarrow \theta_B, \theta_V, R, \theta_{VB}, \theta_{VL}$

Results

- 1. Physical properties of clumps B, n, βp, Pth, Mrms, M, MArms, MA
- 2. Morphology $\longrightarrow \gamma$, β , A₃, S_A
- 3. Relative alignments $\longrightarrow \theta_B, \theta_V, R, \theta_{VB}, \theta_{VL}$

Results

- 1. Physical properties of clumps B, n, βp, Pth, Mrms, M, MArms, MA
- 2. Morphology $\longrightarrow \gamma$, β , A₃, S_A
- 3. Relative alignments $\longrightarrow \theta_B, \theta_V, R, \theta_{VB}, \theta_{VL}$

γ

 $eta = rac{intermediate\ semi-axes}{largest\ semi-axes}$

β

β

Results

- 1. Physical properties of clumps B, n, βp, Pth, Mrms, M, MArms, MA
- 2. Morphology $\longrightarrow \gamma$, β , A₃, S_A
- 3. Relative alignments $\longrightarrow \theta_{B}, \theta_{V}, R, \theta_{VB}, \theta_{VL}$

Relative alignments

$$\overline{R}=(\overline{C}^2+\overline{S}^2)^{rac{1}{2}}$$

Relative alignments

 θ_{B} : largest principal axis of the clump and magnetic field

 θ_{v} : largest principal axis of the clump and velocity

Relative alignments

 θ_{VB} : velocity and magnetic field

Discussion

- 1. Internal motions and magnetic field intensity
- 2. Pressure balance
- 3. Effects of the magnetic field on morphology
- 4. Magnetic field alignments

Discussion

- 1. Internal motions and magnetic field intensity
- 2. Pressure balance
- 3. Effects of the magnetic field on morphology
- 4. Magnetic field alignments

1. Internal motions and magnetic field intensity

1. Internal motions and magnetic field intensity

Clumps as a whole move supersonically while their internally movements are barely transonic

1. Internal motions and magnetic field intensity

Clumps as a whole move supersonically while their internally movements are barely transonic

Accordance with previous numerical works (e.g. Heitsch et al. 2005; Hennebelle et al. 2007; Saury et al. 2014)

Discussion

- 1. Internal motions and magnetic field intensity
- 2. Pressure balance
- 3. Effects of the magnetic field on morphology
- 4. Magnetic field alignments

• $\beta_p \longrightarrow$ not all the clumps magnetically dominated

- $\beta_p \longrightarrow$ not all the clumps magnetically dominated
- Bulk distributions super-Alfvénic

- $\beta_p \longrightarrow$ not all the clumps magnetically dominated
- Bulk distributions → super-Alfvénic
- Internal velocity distributions sub-Alfvénic or trans-Alfvénic (except for

the low B₀ model)

- $\beta_p \longrightarrow$ not all the clumps magnetically dominated
- Bulk distributions → super-Alfvénic
- Internal velocity distributions sub-Alfvénic or trans-Alfvénic (except for

the low B₀ model)

• Observations consistent with the distributions including only internal motions

Discussion

- 1. Internal motions and magnetic field intensity
- 2. Pressure balance
- 3. Effects of the magnetic field on morphology
- 4. Magnetic field alignments

• Most of the clumps are filament-like structures

- Most of the clumps are filament-like structures
- The probability of having more aspherical clumps increases for models with $B_0 \neq 0$

- Most of the clumps are filament-like structures
- The probability of having more aspherical clumps increases for models with $B_0 \neq 0$
- High probability of forming highly prolate clumps for magnetized models and low probability of having oblate structures

- Most of the clumps are filament-like structures
- The probability of having more aspherical clumps increases for models with $B_0 \neq 0$
- High probability of forming highly prolate clumps for magnetized models and low probability of having oblate structures
- Large difference between magnetized and non-magnetized clumps
 —
 magnetic fields are heavily relevant to the structure of the neutral clumps of the ISM

- Most of the clumps are filament-like structures
- The probability of having more aspherical clumps increases for models with $B_0 \neq 0$
- High probability of forming highly prolate clumps for magnetized models and low probability of having oblate structures
- Large difference between magnetized and non-magnetized clumps
 —
 magnetic fields are heavily relevant to the structure of the neutral clumps of the ISM
- Accordance with previous works (Hennebelle 2013; Xu et al. 2019)

 HI filaments → edge-on shells or sheets originated by shock-waves resulting from supernova explosions (Kalberla et al. 2016, 2017a)

- HI filaments → edge-on shells or sheets originated by shock-waves resulting from supernova explosions (Kalberla et al. 2016, 2017a)
- These models cannot evaluate the presence of CNM sheets

Discussion

- 1. Internal motions and magnetic field intensity
- 2. Pressure balance
- 3. Effects of the magnetic field on morphology
- 4. Magnetic field alignments

• As *B*₀ increases the clumps are preferentially perpendicular to magnetic field.

- As *B*₀ increases the clumps are preferentially perpendicular to magnetic field.
- $\overline{\theta}_{VL} \rightarrow \pi/2$: compression facilitates the accumulation of material in directions almost perpendicular to the flow

- As B₀ increases the clumps are preferentially perpendicular to magnetic field.
- *θ*_{VL} → π/2 : compression facilitates the accumulation of material in directions almost perpendicular to the flow
 *θ*_{VB} wider as B₀ increases: the internal motions in the clumps of this sample are not preferentially along the

magnetic field lines

• Study of the cold clumps formed via thermal instability in HD and MHD simulations of the atomic interstellar medium

- Study of the cold clumps formed via thermal instability in HD and MHD simulations of the atomic interstellar medium
- The morphology of HD is different to MHD

- Study of the cold clumps formed via thermal instability in HD and MHD simulations of the atomic interstellar medium
- The morphology of HD is different to MHD
- Predominantly filament-like structures and tendency to prolate structures for MHD with respect to HD

- Study of the cold clumps formed via thermal instability in HD and MHD simulations of the atomic interstellar medium
- The morphology of HD is different to MHD
- Predominantly filament-like structures and tendency to prolate structures for MHD with respect to HD
- Preferred angles for $heta_B: [\pi/4, \pi/2]$

- Study of the cold clumps formed via thermal instability in HD and MHD simulations of the atomic interstellar medium
- The morphology of HD is different to MHD
- Predominantly filament-like structures and tendency to prolate structures for MHD with respect to HD
- Preferred angles for $\theta_B : [\pi/4, \pi/2]$
- Asphericity and prolatness: a different way to characterize the morphological properties of density structures

Thank you for your attention!