“PS1-STRM: Neural network source classification and photometric redshift catalogue for PS1 3π DR1”

Elias Kyritsis
Journal Club-30/10/2020
Institute of Astrophysics, Crete
PS1-STRM: Neural network source classification and photometric redshift catalogue for PS1 3π DR1

Róbert Beck1,2, István Szapudi1,2, Heather Flewelling1, Conrad Holmberg1,3, Eugene Magnier1

1Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI, 96822, USA
2Department of Physics of Complex Systems, Eötvös Loránd University, Pf. 32, H-1518 Budapest, Hungary
3Platform Services, Stanford Health Care, 300 Pasteur Drive, Stanford, CA, 94305, USA

Accepted XXX. Received YYY; in original form ZZZ

ABSTRACT

The Pan-STARRS1 (PS1) 3π survey is a comprehensive optical imaging survey of three quarters of the sky in the \textit{grizy} broad-band photometric filters. We present the methodology used in assembling the source classification and photometric redshift (photo-z) catalogue for PS1 3π Data Release 1, titled Pan-STARRS1 Source Types and Redshifts with Machine learning (PS1-STRM).

For both main data products, we use neural network architectures, trained on a compilation of public spectroscopic measurements that has been cross-matched with PS1 sources.

We quantify the parameter space coverage of our training data set, and flag extrapolation using self-organizing maps. We perform a Monte-Carlo sampling of the photometry to estimate photo-z uncertainty.

The final catalogue contains 2,092,054,648 objects. On our validation data set, for non-extrapolated sources, we achieve an overall classification accuracy of 98.1\% for galaxies, 97.8\% for stars, and 96.6\% for quasars.

Regarding the galaxy photo-z estimation, we attain an overall bias of $\langle \Delta z_{\text{norm}} \rangle = 0.0005$, a standard deviation of $\sigma(\Delta z_{\text{norm}}) = 0.0322$, a median absolute deviation of $\text{MAD}(\Delta z_{\text{norm}}) = 0.0161$, and an outlier fraction of $O = 1.89\%$.

The catalogue will be made available as a high-level science product via the Mikulski Archive for Space Telescopes at \url{https://doi.org/10.17909/t9-rnk7-gr88}.

Key words: catalogues - cosmology: large-scale structure of Universe - methods: data analysis - methods: numerical.
Introduction

Optical broad-band photometry \implies Very important for gathering information from the Universe

Numerous surveys are dedicated to obtain images and/or spectra!

E.g. SDSS

- Combination of spectroscopic + imaging measurements
- Coverage = 14,000 deg2 of the sky
- Results to = 7,700 peer reviewed papers

Main usage of optical photometry \implies Distinguishing of astronomical objects to

- Stars
- Galaxies
- QSOs

Not a trivial task if only info from broadband photometry is available !!!
Introduction

Traditional approaches for the source classification

- **Galaxy/Non galaxy separation:** Galaxies are extended sources \(\rightarrow\) A cut in their PSF aperture mag vs extended aperture mag. Problematic cases: Faint objects

- **QSO/Star separation:**
 - Cuts in colour - colour diagrams (Low redshift QSOs)
 - Optical & Infrared observations / Time-domain observations (High redshift OSOS)

Figure 8. The Y - K vs. y - z colour-colour diagram of the SDSS- Kilo-Degree survey and star samples. Green crosses, blue crosses and red circles denote quasars with \(z < 2.3\), \(2.3 < z < 4\) and \(z > 4\), respectively. Black dots and cyan dots denote stars classified as ‘STAR’ and ‘STARLATE’ by SDSS spectroscopy. Dashed line indicates the separation criterion \(F_{BB} = 0.45(y - z) - 0.32\). Solid curve is derived from the medium colour relation (see section 3) of quasars. The solid triangles, from left to right, mark the colours of quasars with \(z = 0.02\), 4 and 5, respectively, derived from the colour-\(z\) relation. Typical error bars are shown in the lower-right corner.

Figure 5. Distribution of the variability structure function parameters \(A\) and \(\gamma\) (Equation 5) for \(~15,000\) individual objects in Stripe 82. The spectroscopically confirmed quasars are shown as light blue points; confirmed RR Lyrae and color-selected F/G stars are shown in red and grey respectively. A separation of the quasars from the stellar locus contaminations is clearly seen. The three solid lines (Equations 7 - 9) define the region in which we estimate the quasar completeness \(c\) of our algorithm (which turns out to be \(93\%\) in this case, Table 5). Along the axes we show the projected \(A\) and \(\gamma\) distributions for the subsamples.

[Wu & Jia, 2010]
[Schmidt et al., 2010]
Introduction

Traditional approach for the photo-z estimation

Photo-z : Very important for the galaxies. Useful for distance measurements!

- Template fitting approaches

Phot-z estimation with templates

1. A number of template-spectra (observations or populations synthesis models) is redshifted in λ.

2. For each template-spectrum and any z the expected galaxy colours are determined.

3. This set of colours is compared with the observed galaxy colours.

4. The best match determines the galaxy’s z and type.

[Schneider P, Extragalactic Astronomy & Cosmology, 2nd Ed, 2015]
Introduction

Problems with the traditional methods of source classification & photo-z estimation

- **Classification**: Boundary definitions, useful photometric bands, apertures → Based on a few low-dimensional projections of a complex high-dimensional space

- **Photo-z estimation**: Insufficient number of different filters, errors on magnitudes measurements

Solution

MACHINE LEARNING METHODS

- **Classification**: ML methods make automatically choices of photometric bands, aperture size, etc. based on the entire multi-dimensional parameter space

- **Photo-z estimation**: ML methods seem to be more accurate than template fitting methods, when there is large number of spectro-z data available for the model’s calibration
Introduction

This work

- Based on Pan-STARRS1 3π survey Data Release 1
 - The currently largest imaging survey
 - Coverage $= 30,000$ deg2 of the sky
 - 10.7 billion unique objects - 3 billion sources confirmed in multiple bands

- Creation of *Pan-STARRS1 Source Types and Redshifts with Machine Learning (PS1-STRM)*
 by using machine learning for source classification & photo-z estimation
Data sets

Photometric data

Broad-band photometric measurements: \(g,r,i,z,y \)

Photometry methodologies:

- Mean photometry: based on single-epoch detections
- Stack photometry: stacking all observations in a given (field and filter)
- Forced mean photometry: Objects detected in the stacks, not necessarily detected in single exposures

Which one is the best?

For the purposes of a uniform classification and photo-z catalog \(\rightarrow \) Forced Mean Photometry

Why?

Deepest & accurate photometry available for all sources

Sufficient aperture magnitude

6 different photometries:

- PSF (describes well the flux from stars & QSOs)
- Kron (describes well the flux of extended sources)
- seeing-matched apertures
- \(3.00'', 4.63'', 7.43'' \)

6 different photometric values \(\times \) 5 bands

30 measures of the multi-band flux of a light source

https://www.lsst.org/
Data sets
Spectroscopic data

Class & z: Determined by detailed analysis of high-resolution spectra

Cross-matching of spectroscopic sources with the PS1 3π DR1 and acceptance of only certain matches (closer than 1.5”, Bayes factor > 10,000)

Keep only high quality spectra
Data sets

Dust maps

Photometry in PS1 3π DR1 in not corrected for extinction!

Data augmentation with 2 extra data sets:

1. PS1 observations of Galactic stars. Tracking the reddening until 4.5 kpc
2. Planck CMB (accounts for overall extinction)

Total Number of features for each object

<table>
<thead>
<tr>
<th>6 different apertures x 5 bands</th>
<th>+</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 E(B-V) values from PS1 & Planck CMB</td>
<td></td>
</tr>
</tbody>
</table>

32 features
Methodology

Neural Network configuration

Why a NN?
Flexible with non-linear models + Capable of recognizing useful patterns in multidimensional space

Input Layer
3 Hidden Layers
Output Layer
32 neurons
30 mags + 2 E(B-V)
512 512 512

Predicted Photo-z

CLASSIFICATION

PHOTO-z ESTIMATI0N

STAR
GALAXY
QSO
Methodology

Training Setup

- Training sample: 80% of the ~3.8 million spectroscopic dataset
- Validation sample: 20% of the ~3.8 million spectroscopic dataset

Classifier Model: Trained for 150 epochs

Only objects that classify as galaxies used for the training of photo-z estimator

Mirroring the actual use case!

Regression Model: Trained for 100 epochs
Methodology

Self Organizing Maps (SOMs)

NN are not capable to extrapolate into regions of the input parameter space that are not covered from the training set.

A way to quantify the training set coverage in the 30-d magnitude space is to use SOMs.

SOMs: N.N model that identifies correlations in high dimensional data.

Extrapolation:
\[d_{SOM} > 1.562 \]

Extrapolation:
\[d_{SOM} > 1.246 \]

Figure 2. The distribution of \(d_{SOM} \), the Euclidean distance (in normalized magnitude space) from the nearest cell centre in the SOM, for validation set objects. Vertical dashed lines represent the cut that defines whether an object is flagged as extrapolated. The left panel corresponds to the classification SOM and validation set, while the right panel shows the photo-z SOM and validation set.
Methodology

Catalogue processing

1st step: 2 E(B-V) values from dust maps based on l,b galactic coordinates

2nd step: 2 E(B-V) + 30 photometric fluxes \rightarrow N.N. classification $\rightarrow p_{\text{star}}, p_{\text{gal}}, p_{\text{QSO}}$

3rd step: If: $p_{\text{class}} > 0.70$ \rightarrow Object is flagged with the corresponding class else: Object is flagged as “Unsure”

4th step: Based on SOM $\rightarrow d_{\text{SOM}} > 1.562$ \rightarrow Object is flagged as “Extrapolated”

5th step: Only objects flagged as “Galaxies” \rightarrow N.N. photo-z estimation $\rightarrow z_{\text{phot,0}}$

6th step: Monte Carlo sampling
- 100 multivariate Gaussian random samples with std= mag errors
- 100 realizations of the N.N. photo-z estimation
- 100 $z_{\text{phot,0}}$ values \rightarrow Median = z_{phot}

7th step: Based on SOM \rightarrow Galaxies with $d_{\text{SOM}} > 1.244$ \rightarrow Object is flagged as “Extrapolated”
Validation Results

T1: galaxy classified as galaxy
T0: non-galaxy classified as non-galaxy
F1: non-galaxy classified as galaxy
F0: galaxy classified as non-galaxy

Metrics for the evaluation of the classification model
Purity = T1/(T1+F1), Completeness = T1/(T1+F0), Overall success = (T1+T0)/(T1+T0+F1+F0)

| Table 2. Classification metrics for the galaxy, star and quasar classes, for different b decision boundary choices: P, the purity; C, the completeness; and S, the overall success rate. The fiducial decision boundary is b = 0.7. The metrics were evaluated on our validation data set. See the text for a detailed description of the metrics. |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| | P_{gal} | C_{gal} | S_{gal} | P_{star} | C_{star} | S_{star} | P_{qso} | C_{qso} | S_{qso} |
| 0.50 | 98.03% | 98.86% | 97.74% | 94.61% | 94.11% | 97.15% | 90.12% | 85.87% | 96.70% |
| 0.60 | 98.30% | 98.54% | 97.91% | 95.87% | 92.69% | 97.78% | 97.32% | 82.38% | 96.57% |
| **0.70** | **98.56%** | **98.06%** | **97.77%** | **96.97%** | **90.68%** | **97.57%** | **94.17%** | **77.92%** | **96.23%** |
| 0.80 | 98.82% | 97.19% | 97.38% | 98.00% | 97.38% | 99.22% | 95.99% | 87.85% | 95.99% |
| 0.90 | 99.13% | 98.03% | 96.71% | 98.92% | 98.93% | 94.41% | 97.83% | 97.83% | 60.45% | 94.27% |
| 0.95 | 99.34% | 91.59% | 94.04% | 99.41% | 97.64% | 95.44% | 98.62% | 50.70% | 92.99% |
| 0.99 | 99.75% | 64.20% | 76.26% | 99.79% | 64.55% | 92.89% | 99.47% | 29.09% | 90.04% |

| Table 3. The same as Table 2, but the classification metrics were evaluated only on non-extrapolated sources within our validation data set. |
|---|---|---|---|---|---|---|---|---|---|
| | P_{gal} | C_{gal} | S_{gal} | P_{star} | C_{star} | S_{star} | P_{qso} | C_{qso} |
| 0.50 | 98.36% | 90.01% | 98.25% | 94.88% | 95.01% | 97.95% | 90.85% | 72.34% |
| 0.60 | 98.58% | 98.73% | 98.72% | 96.04% | 93.68% | 97.94% | 92.92% | 83.49% | 96.91% |
| **0.70** | **98.77%** | **98.36%** | **98.10%** | **97.04%** | **91.89%** | **97.79%** | **94.55%** | **79.44%** | **96.60%** |
| 0.80 | 98.97% | 97.73% | 97.82% | 98.04% | 96.22% | 91.46% | 96.29% | 73.76% | 96.00% |
| 0.90 | 99.22% | 98.04% | 98.88% | 98.94% | 94.36% | 96.65% | 97.89% | 63.53% | 94.88% |
| 0.95 | 99.30% | 93.18% | 95.10% | 99.43% | 79.06% | 95.67% | 98.65% | 53.86% | 93.66% |
| 0.99 | 99.77% | 66.44% | 77.67% | 99.80% | 65.83% | 93.06% | 99.49% | 31.28% | 90.68% |
Validation Results

Photo-z

Standard literature metrics:

- $\Delta z_{\text{norm}} = (z_{\text{phot}} - z_{\text{spec}})/(1+z_{\text{spec}}) \equiv \text{Redshift error}$
- $O \equiv |\Delta z_{\text{norm}}| > 0.15 : \text{Outliers fraction}$
- $<\Delta z_{\text{norm}}> \equiv \text{Average bias (only on non-outliers)}$
- $\text{MAD}(\Delta z_{\text{norm}}) \equiv \text{Median Absolute Deviation}$

Table 4. Photo-z accuracy metrics computed on the base and Monte-Carlo sampled redshift estimates, for all validation set galaxies, and for non-extrapolated validation set galaxies. See the text for more details.

<table>
<thead>
<tr>
<th>Data set</th>
<th>Estimate</th>
<th>$\langle \Delta z_{\text{norm}} \rangle$</th>
<th>$\sigma(\Delta z_{\text{norm}})$</th>
<th>MAD(Δz_{norm})</th>
<th>O</th>
</tr>
</thead>
<tbody>
<tr>
<td>All validation</td>
<td>$z_{\text{phot,0}}$</td>
<td>0.0003</td>
<td>0.0342</td>
<td>0.0169</td>
<td>2.88%</td>
</tr>
<tr>
<td>All validation</td>
<td>z_{phot}</td>
<td>0.0010</td>
<td>0.0344</td>
<td>0.0170</td>
<td>2.99%</td>
</tr>
<tr>
<td>Non-extrapolated</td>
<td>$z_{\text{phot,0}}$</td>
<td>0.0005</td>
<td>0.0322</td>
<td>0.0161</td>
<td>1.89%</td>
</tr>
<tr>
<td>Non-extrapolated</td>
<td>z_{phot}</td>
<td>0.0013</td>
<td>0.0323</td>
<td>0.0163</td>
<td>2.00%</td>
</tr>
</tbody>
</table>

- Added noise from MCS
 - Slightly lower performance
 - Suggested to use: $z_{\text{phot,0}}$
Validation Results

Extrapolated sources introduce unwanted features $z_{\text{phot}} = 0.43$ (object with missing photometry)

Suggestion for users:

1. Limit the analysis to Non-extrapolated sources!
2. Useful range: $z \in [0,0.6]$!
Take home message

- Creation of a new catalogue (PS1 3π DR1) including source classification and photo-z estimation by using machine learning methods
- Size: **2,902,054,648** objects

- Quantification of the parameter space of the training sample by using SOM. Definition of extrapolation boundaries

<table>
<thead>
<tr>
<th>Non-extrapolated objects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Galaxy</td>
</tr>
<tr>
<td>b</td>
</tr>
<tr>
<td>0.70</td>
</tr>
</tbody>
</table>

- Best photo-z estimation $z_{\text{phot,0}}$, since MCS add extra noise
- Future plans:
 - Optimization of the N.N hyperparameters
 - Inclusion of infrared observations

- Catalogue will be publicly available via [Mikulski Archive for Space Telescopes (MAST)](http://mast.stsci.edu/).
\[B = \frac{L \text{(same source)}}{L \text{(separate sources)}} = \frac{2}{\sigma_1^2 + \sigma_2^2} \exp \left\{ -\frac{\psi^2}{2(\sigma_1^2 + \sigma_2^2)} \right\} \]

Here \(\sigma_1 \) and \(\sigma_2 \) are the astrometric errors of two given galaxies, and \(\psi \) is the angular separation between them. We accepted matches with \(B > 10,000 \), thus ensuring that we only used rather certain matches.