

Eccentric millisecond pulsars by resonant convection

by Sivan Ginzburg and Eugene Chiang

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ UNIVERSITY OF CRETE IA-FORTH Journal Club discussion Heraklion, Greece, 28 January 2022

Red Giant evolution

The puzzle

- Circularization theory predicts e $\sim 10^{-43}$
- Observed eccentricities of conventional MSPs are small, but non-zero
- Recent years eMSPs with $e \sim 0.1$ have been discovered
- These eMSPs deviate strongly from the general e P relation within a narrow range of orbital periods P \approx 20 30 days

BUT

• Both MSPs and eMSPs follow the same mass-period relation $P \propto \left(m_{\text{core}}^{-1/3} r_{\text{env}}\right)^{3/2} \propto m_{\text{core}}^{25/4} \approx m_{\text{core}}^{6}$

suggesting their common origin (RLOF of an RGB star with shell burning)

 Although residual eccentricities of MSPs can be explained (fluctuationdissipation theorem; Phinney 1992), the existence of eMPSs poses a significant challenge

Alternative formation channels for eMSPs

Observations

- Mass measurements (e.g. PSR J1946+3417, PSR J2234+0511) seem to contradict RD-AIC & strange star scenarios
- CBD scenario so far seems to be consistent with all observations

Eccentricity maintened by convection

Fluctuation-dissipation theorem: turbulent density fluctuations in the donor's convective envelope prevent perfect circularization of the orbit (Phinney 1992)

$$e \propto \left(\frac{m_{\rm env}}{m_{\rm core}}\right)^{1/2} P^{1/3} v_{\rm eddy} \propto m_{\rm env}^{1/6} m_{\rm core}^6 \propto P$$

This explains well the observations for conventional MSPs except for the anomalous eMSPs, which cluster at P \approx 20 - 30 days

Resonance: Orbital period equals the eddy's turnover time $(P \sim t_{eddy})$. For RGB stars $t_{eddy} \approx 25$ days, <u>exactly where</u> <u>the eMSPs are being found</u>

Ansazt

At resonance eddies do not randomly change direction. Instead they form long-lived vortices generating a quadrupole moment that oscillates coherently and not stochastically \longrightarrow supported by 3D simulations of rotating RGB stars when $Ro \equiv \frac{P_{spin}}{t_{eddy}} \sim 1$

Eccentricity enhancement by resonant convection

Results (in a nutshell)

✓ Assuming the eddies coherently perturb the orbit over t_{circ} , the eccentricity at resonance is enchanced by a factor of

$$\frac{e^{\text{res}}}{e} = \frac{v_e^{\text{res}}}{v_e} \sim \left(\frac{t_{\text{circ}}}{t_{\text{eddy}}}\right)^{1/2} \sim \left(\frac{t_{\text{nuc}}}{P}\right)^{1/2} \approx 3 \times 10^3$$

On Hayashi track, H⁻ opacity depends strongly on metallicity; Different compositions lead to $\frac{\Delta T_{eff}}{T_{eff}} \approx 0.3$ (Kippenhahn et al. 2012) Since $t_{eddy} \sim \left(\frac{m_{env}}{\sigma T_{eff}}\right)^{1/3} \rightarrow \frac{\Delta P}{P} \approx 0.4$

- The spread in observed eMSPs orbital periods can be explained from variations in t_{eddy} due to different metallicities
- These variations broaden the range of resonant P but also leave systems out of resonance

Ginzburg & Chiang (2022)