Konstantinos Kovlakas Journal Club, 2019/12/20

First results from the TNG50 simulation:Pillepich+2019the evolution of stellar and gaseous disks across cosmic time

Background

• **Structural morphology** of galaxies is dictated by kinematics of stars, gas and dark matter.

Affected by accretion of cosmic gas, star formation, galaxy mergers and interactions, feedback from star-formation or SMBHs, gas outflows/recycling

- **Disk-like** morphology is associated with kinematics: **rotation**
- Different levels of **star formation** ↔ **morphology**

Current issues from observations

- At z ~ 2, large star-forming galaxies are gas-rich rotating disks, but exhibit larger contribution of random gas motion
- Many star-forming galaxies at $z \sim 1.5$ are **elongated**
- Are galaxy **disks settled** with time i.e. increasing in rotational velocity and declining in velocity dispersion?
- Do galaxy **disks settle faster** for higher mass galaxies?

Can we reproduce the properties of galaxies at z = 0, having a **complete theory** of galaxy formation?

Limitations of previous studies

Until now large simulations (e.g. *Illustris300/100, EAGLE*)
 do not have high resolution.

They only show connection between SFR, M and morphology, avoiding the **intrinsic three-dimensional shape**.

- Zoom-in simulations (e.g. *Eris, Auriga*) with high resolution, study few objects, i.e. **representative** classes.
- What about a simulation with high resolution & sample size?

What is TNG50 and why care?

- It is a cosmological **gravo-MHD** simulation of **galaxy formation**, trying to answer the aforementioned questions
- Tracks properties of **thousands** of galaxies across cosmic history
- High **resolution** that probes the 3D structure of galaxies
- **Diversity**: isolated galaxies, interacting galaxies, mergers, clusters
- **IA members** are already, or planning, or may want to use data from the TNG simulations

Astronomy & Astrophysics manuscript no. aanda December 19, 2019 ©ESO 2019

Turnaround radius of galaxy clusters in N-body simulations

Giorgos Korkidis,^{1,2,*}, Vasiliki Pavlidou^{1,2,**}, Konstantinos Tassis,^{1,2}, Evangelia Ntormousi^{1,2}, Theodore N. Tomaras¹, Konstantinos Kovlakas^{1,2}

MNRAS **490**, 3196–3233 (2019) Advance Access publication 2019 September 9

doi:10.1093/mnras/stz2338

First results from the TNG50 simulation: the evolution of stellar and gaseous discs across cosmic time

Annalisa Pillepich,¹* Dylan Nelson[®],² Volker Springel[®],² Rüdiger Pakmor[®],² Paul Torrey[®],³ Rainer Weinberger,⁴ Mark Vogelsberger[®],⁵ Federico Marinacci[®],^{5,6} Shy Genel[®],⁷ Arjen van der Wel^{1,8} and Lars Hernquist⁴

¹Max-Planck-Institut für Astronomie, Königstuhl 17, D-69117 Heidelberg, Germany

²Max-Planck-Institut für Astrophysik, Karl-Schwarzschild-Str 1, D-85741 Garching, Germany

³Department of Physics, University of Florida, 2001 Museum Rd., Gainesville, FL 32611, USA

⁴Harvard–Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138, USA

⁵Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA

⁶Department of Physics and Astronomy, University of Bologna, via Gobetti 93/2, I-40129 Bologna, Italy

⁷Center for Computational Astrophysics, Flatiron Institute, 162 Fifth Avenue, New York, NY 10010, USA

⁸Sterrenkundig Observatorium, Universiteit Gent, Krijgslaan 281 S9, B-9000 Gent, Belgium

The article and our focus

Purpose

- Structural and kinematical evolution of star-forming galaxies at 0 < z < 6
- Sizes, disk heights, 3D shapes, rotational vs dispersion-supported motion
- Predictions for $H\alpha$ and stellar-light tracers

Our focus

- Few key, qualitative results
- Science value of the simulation

The model

- Planck Collaboration XIII (2016) cosmological parameters
- (51.7 cMpc)³ volume
- 2 x 2016³ dark matter particles and gas cells
- 8.5 x 10⁴ M_{\odot} baryonic elements
- Average cell size: **70–140 pc** in star-forming regions (comparable to zoom-in)
- At z=1, ~6500 galaxies with stellar mass >10 8 M $_{\odot}$
- At z=0, ~130 galaxies as massive as MW & one Virgo-cluster analogue
- "Necessarily simplified numerical treatment of star formation and feedback that acts below ~100 pc scales in the ISM". Using Springel & Hernquist (2003) model.

The simulation

9

Analysis

- Galaxy identification: haloes, subhaloes, galaxies (central and satellite)
- Galaxy descriptors

M *	•	stellar particles \rightarrow Chabrier IMF
M_{g}	•	gas cells
M _{HI}	•	neutral H gas cells
На	•	instantaneous SFR \rightarrow Kennicutt (1998) scaling relation
V-band	•	light from stellar particles at 0.55 µm

• Galaxy properties

size $(r_{1/2})$: disk height $(h_{1/2})$: shape : kinematics :

3D stellar/gas half-mass radius / 2D half-light in V/Hα half-mass or half-light (stars or gas)

- : (i) minor/major axis and (ii) middle/major axis
 - velocity dispersion and rotational velocity

Emergence of SFMS and selection of star-forming galaxies with $M_* > 10^7 \,\mathrm{M}_{\odot}$

11

Mock JWST images (from site) using Monte Carlo radiative transfer post-processing

Results: extent of different components

- V and Ha trace each other within a factor of ~ 2
- Ha > stars at recent times for massive galaxies: mergers

Results: disk heights

- Heights increase with M_* at $z \sim 0.5$, non-monotonic relation after $z \sim 1$
- *Ha*: thinner

Results: 3D shapes

Observed

- Disky for
 <z and >M*
- Elongated for
 z and <*M**

Novelty

 Hα shape is mostly disky or elongated

Results: kinematical maps

- Edge on: rotational velocity | Face on: velocity dispersion
- Stellar (top): they find bulges, bars, etc. Ha (bottom): enhanced complexity

Ηα

Results: V_{rot} and σ measures for galaxies (figures for stellar mass only)

- V_{rot} : mean vel. in bins of 0.5 ckpc \rightarrow absolute maximum
- σ : vel. disp. in bins of 0.5 ckpc \rightarrow mean at $1 < r/r_{1/2} < 2$
- V_{rot} & σ decrease with time at fixed M_* . Weaker z-trends for V_{rot}
- V_{rot} is stronger function of stellar mass than σ
- At all redshifts, V_{rot} >> Ha

Results: order vs. disordered motion, aka V_{rot} / σ

- Dense gas has larger V_{rot}/σ at all z and M_*
- Stellar V_{rot}/σ does not evolve much with time
- At higher masses the ratio declines, possibly due to merger activity increasing σ
- Flatter galaxies have higher ratio (no fig.)

 V_{rot}/σ lower for stars, interpreted as vertical, dispersion-supported motion of stars although dispersion fields more coherent (kinamatical maps)

We need better observational diagnostics to capture the chaotic nature of gas kinematics.

Results: settling of disks

- Solid: kinematics
- **Dashed**: flatness from 3D shape
- Relative to z = 3 where most galaxies are classified as gaseous disks
- Trends for stars are more coupled than for gas
- A typicall star-forming galaxy has $h_{1/2}/r_{1/2} < 0.1$

Important results

- Star-forming galaxies become disky quickly (observed) Disks become more rotationally supported (observed)
- Gas and stellar components: different structural/kinematic behaviours: stars have collisionless dynamics while gas is collisional and dissipates energy through radiative cooling
- Smaller galaxies have larger velocity dispersions (observed)
- Rapid drop of velocity dispersion through time.
 - Small scale turbulance in the ISM is not modelled and could increase it.
 - Other drivers are modelled (e.g. interactions, gas inflows/outflows):

in the future they will disentangle them

Closing remarks on simulation

- Structures at lower masses (10⁸ at z=0) than previous uniform-volume simulations
- Resolving thinner galaxies (~100 pc) than previous simulations, unaffected by gravitational softening (~300 pc)

Caveats

- (i) simple treatment of **unresolved ISM**
- (ii) **empirical scaling** between SFR and $H\alpha$
- (iii) **simplified galactic winds** from SN ISM interactions

A protocluster at z ~ 1

Two massive galaxy groups in a protocluster. Large DM haloes (orange), bridge of DM (blue), high-speed gas (white) reveals outflows and ram-pressure & tidal stripping of orbitting satellite galaxies

Backup: gravitational softening

 In N-body simulations, particles may come very close to each other, resulting into infinite forces. The gravitational softening is the trick of choosing a very small value e so that the radius in the potential equation is never zero:

$$\Phi = -\frac{1}{\sqrt{r^2 + e^2}}$$