Formation of GW190521 via gas accretion onto population III stellar black hole remnants born in high-redshift minihalos

> IA/FORTH Journal Club, 2020-10-16 Konstantinos Kovlakas

FORMATION OF GW190521 VIA GAS ACCRETION ONTO POPULATION III STELLAR BLACK HOLE REMNANTS BORN IN HIGH-REDSHIFT MINIHALOS

Mohammadtaher Safarzadeh^{1,2} & Zoltán Haiman³

¹Department of Astronomy & Astrophysics, University of California, Santa Cruz, CA 95064, USA; msafarza@ucsc.edu ²Center for Astrophysics — Harvard & Smithsonian, 60 Garden Street, Cambridge, MA and ³Department of Astronomy, Columbia University, New York, NY 10027, USA; zoltan@astro.columbia.edu

...submitted to ApJ Letters

For information on the discovery, properties and implications...

Properties and astrophysical implications of the $150 \, M_{\odot}$ binary black hole merger GW190521

LIGO Scientific Collaboration and Virgo Collaboration

What's so important about GW190521?

before

after

credit: LIGO

What's so important about GW190521?

- $142^{+28}_{-16}\,\mathrm{M}_{\odot}$
- falls into the class of intermediate-mass black holes
- between the stellar-mass BHs and SMBHs
- "seeds" SMBHs?

LIGO-Virgo Black Hole Mergers

What's so important about GW190521?

Marchant+19

Masses: ~85 ${\rm M}_{\odot}$ and ~66 ${\rm M}_{\odot}$

L+V: 99% of simulated BH primaries have masses below 45 $\rm M_{\odot}$

Cause: pair-instability mass gap

Question: how can we get two companions in the gap?

A possible scenario... Hierarchical mergers

credit: LIGO

Rare and requires really dense environments such as:

young star clusters (e.g., Fragione+20)

AGN accretion disks (e.g., McKernan+12)

globular clusters (e.g., Kimball+20)

Other scenarios

- Wrong assumptions during GW analysis: eccentricity and heads-on collisions (e.g., Calderón Bustillo et al. 2020)
- Gravitational lensing due to a galaxy or a galaxy cluster (e.g., Ng et al. 2018)
- Primordial BHs from dark-matter overdensities (e.g., Carr & Hawking 1974)
- Uncertainties in binary evolution?

A new scenario: Pop III stars formed in a minihalo

Population III stars (z > 10) with zero metallicity:

- suppressed fragmentation = **massive stars** are more common (Hirano+15)
- higher binary fraction (Sana+12)
- decreased stellar winds and evolution = **massive BH remnants** (Farrell+20)

Dark matter minihalos:

- $10^5 10^6 M_{\odot}$, hosting Pop III stars (e.g., Inayoshi+19)
- proposed for forming SMBHs, but... radiative feedback, SN explosions, escaping BHs (e.g., Whalen+08, Alvarez+09, Smith+18)

The toy model: environment

Once upon a redshift (>15) in a minihalo far far away... a Pop III binary is born

When $(z\sim10)$ the minihalo builds up, accretion is efficient

n_c ~ 2.5 × 10¹⁰ cm⁻³

J 650 10 KM 5

 $T_g = 10^4 \text{K}$ $M_{\text{mh}} = 10^7 - 10^8 \text{ M}_{\odot}$ $\rho_g(r) = \frac{\rho_c}{1 + (r/r_c)^2}$

Drag force (gas) \rightarrow system falls in the central region

two cases: $10 M_{\odot} {+} 10 M_{\odot}$ and $40 M_{\odot} {+} 40 M_{\odot}$

$$\tau_{\rm df}(r) \approx 2 \times 10^4 \left(\frac{M_{\rm bh}}{M_\odot}\right)^{-1} \left[1 + \left(\frac{r}{r_c}\right)^2\right] \, {\rm yr}$$

The toy model: accretion near the dense core

Bondi-Hoyle-Lyttleton accretion

 $\dot{M}_{\rm bh} = \frac{4\pi G^2 M_{\rm bh}^2 \rho_g}{(c_s^2 + v_{\rm rel}^2)^{3/2}}$

Eddington accretion rate

 $\dot{M}_{\rm Edd} = 2.2 \times 10^{-8} \left(\frac{M}{M_{\odot}}\right) M_{\odot} {\rm yr}^{-1}$

Hyper-Eddington accretion photon trapping suppresses radiative feedback when BHL accretion rate is >500x the Edd.

Which binary is favored?

For different galactocentric distances:

- $20M_{\odot}$ binary: dynamical friction << accretion timescale to reach $150M_{\odot}$ (GW190521)
- Similar timescales for $80M_{\odot}$ binary
- Only a few thousand years of Hyper-Eddington accretion are need for the more massive case

Predicted merger rates

SFR density $10^{4}-10^{5}$ M_{\odot} yr⁻¹ Mpc⁻³ at z=10-20

Pop III metallicity Z_{crit} =3 x 10⁻⁴ Z_{\odot}

Canonical delay-time distributions (3 choices of slope/minimum time)

Standard **ACDM** parameters

Discussion / Conclusion

- Merger rate and other properties (q / spin) consistent with the L+V result
- Simulations: BBHs spend most of their time in low-density regions, and can orbit away: this model requires **only a few Myrs** to be spent in the dense core
- **3D** simulations with inhomogenous gas distributions to verify this scenario
- Extension: dynamically-captured isolated BHs close to the core
- Even more massive BHs can be formed: lower-f detectors needed (e.g. LISA)