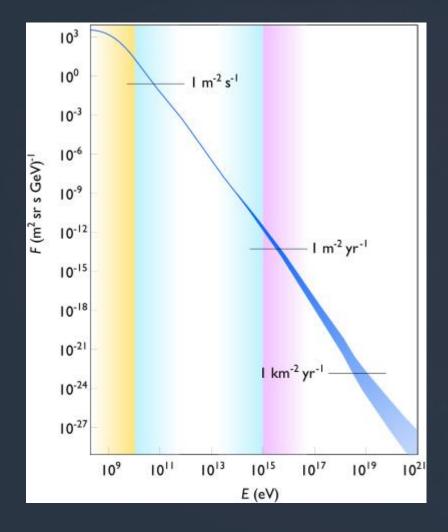
Romanopoulos Stylianos
PhD Candidate at UOC


Cosmic Rays

Pros

- Energies up to $10^{21} \ eV \ (\sqrt{s} = 1000 \ TeV)$ Cern highest energy $\sqrt{s}=13~TeV$ (2015)
- Free of charge!

Cons

- Low flux at high energies
- No control over incoming direction
- No control over initial energy
- Unknown composition of incoming particle

Cosmic Rays

Low Flux and random incoming angles? Lets built something Really Big!!!

Malargüe, Province of Mendoza, Argentina Detection Area of $3000 \ km^2$

Surface Detector Array (SD)

- 1600 water-Cherenkov detectors
- Triangular Grid with a $1500\ m$ spacing
- Small subgrid with a 750 m spacing

Fluorescence Detector (FD)

- 24 telescopes (4 group of 6 telescopes)
- Perimetrical to overlook the entire array
- Camera covers elevation angles from 1.5^o to 30^o azimuth angle 30^o
- Ultraviolet light

Not so "Free of charge" after all... 50 million (Cern 4.5 billion)

Number of incoming beam inside a medium

$$N(z) = N_o e^{-\sigma nz}$$

If the density of the medium is not constant

$$N(z) = N_o e^{-\frac{\sigma}{m}X(z)}$$

Slang depth

$$X(z) = \int_{z}^{\infty} \rho(z')dz'$$

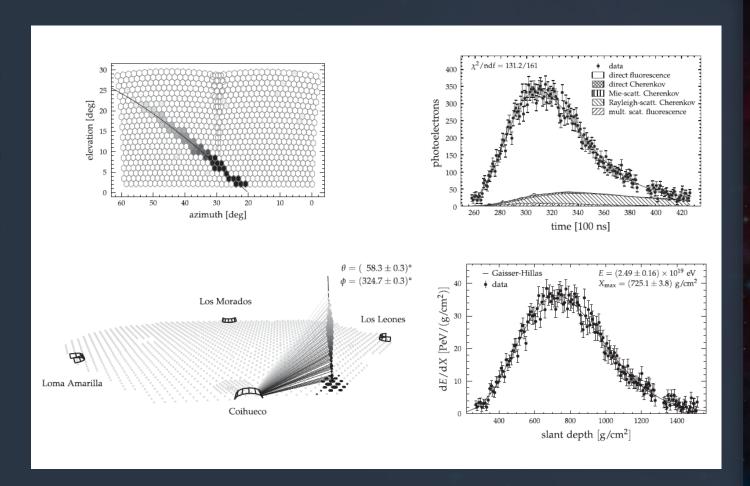
But there is a special Slung depth X_{max} . It is where the shower's energy deposit is maximum.

$$X_{\rm max} \sim \ln A$$

Fluctuation in the first few hadronic interaction. Statistical distribution

$$f(X_{\max}) = \sum_{i} p_i f_i(X_{\max})$$

More realistic


$$f_{\text{obs}}(X_{\text{max}}^{\text{rec}}) = \int_0^\infty f(X_{\text{max}}) \varepsilon(X_{\text{max}}) R(X_{\text{max}}^{\text{rec}} - X_{\text{max}}) dX_{\text{max}}$$

In an ideal detector $\mathcal E$ is constant and R is close to a delta function.

- Observe the distribution and draw conclusions for hadronic interactions. p-p cross section at $\sqrt{s}=53\ TeV$
- Hypothetical models for hadronic interactions calculate X_{max} .

 Corsika program

- FD detects light from an event.
- A Three dimensional reconstruction of the shower.
- Time, path length, height and slang depth Data.
- Light data corrections due to Rayleigh and Mie Scattering.
- Fluorescence photons energy deposit.
- Cherenkov photons charged particles.
- Energy is obtained by integration +(10-15)% neutrinos
- $X_{
 m max}$ from Gaisser Hillas function.

Dec 2004 – Dec 2012

Pre-selection Cuts

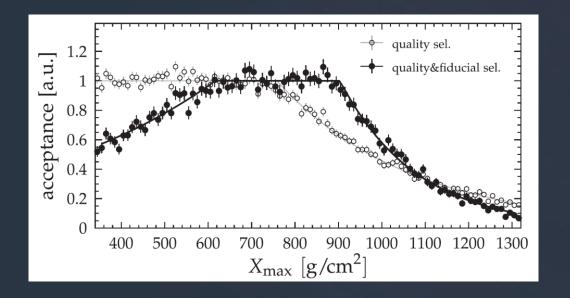
- Uncertain relative times FD SD, misaligned telescopes
- Aerosol measurement within one hour
- Full shower reconstruction (Thunders)
- Shower trajectory far away or close enough
- Trajectory passing though clouds
- Energy lower than 10^17.8 eV

Quality Cuts

- At least one SD trigger
- $X_{
 m max}$ observed in field of view
- $X_{
 m max}$ with large errors from Gaisser Hillas
- Fiducial Field of view
- Gaps in the profile

TABLE I. Event selection criteria, number of events after each cut and selection efficiency with respect to the previous cut.

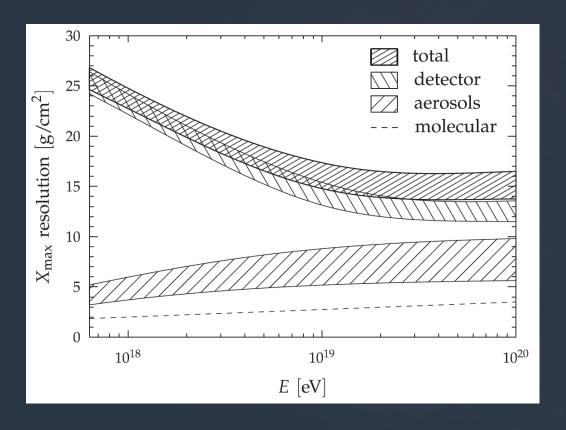
Cut	Events	$arepsilon \ [\%]$
Pre-selection:		
Air-shower candidates	2573713	
Hardware status	1920584	74.6
Aerosols	1569645	81.7
Hybrid geometry	564324	35.9
Profile reconstruction	539960	95.6
Clouds	432312	80.1
$E > 10^{17.8} \text{ eV}$	111194	25.7
Quality and fiducial selection:		
P(hybrid)	105749	95.1
X_{max} observed	73361	69.4
Quality cuts	58305	79.5
Fiducial field of view	21125	36.2
Profile cuts	19947	94.4

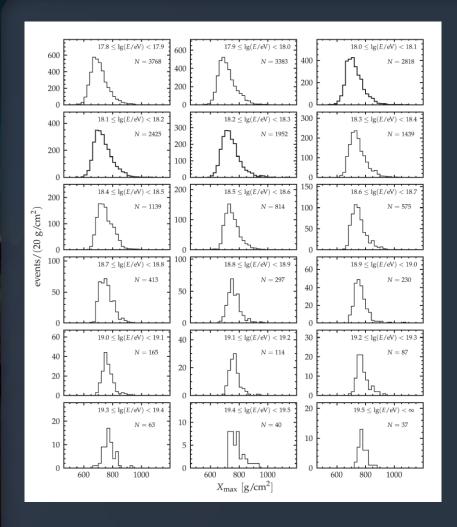

Ultra High Energy Cosmic Rays

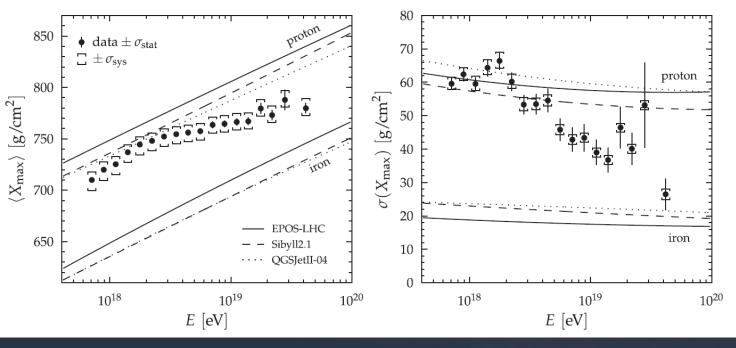
Time dependent Simulations for the atmosphere, the FD and the SD detectors.

$$efficiency = \frac{Selected events}{Generated events}$$

"The shape of the longitudinal energy-deposit profiles of the air showers at ultrahigh energies is, to a good approximation, universal, i.e., does not depend on the primary particle type or details of the first interaction".


Thus the acceptance depends only on the and the energy and X_{max} .




Broadening of the original distribution by statistical fluctuations of $\langle X_{\rm max}^{\rm rec} \rangle$ around $\langle X_{\rm max} \rangle$.

- **Detectors**
 - Number of photoelectrons and GH fit
 - Alignments of the telescopes
 - time of arrival between FD and SD detectors
- Aerosols measurements
- **Molecular Atmosphere**

$$R(X_{\text{max}}^{\text{rec}} - X_{\text{max}}) = fG(\sigma_1) + (1 - f)G(\sigma_2)$$

$$\langle X_{\text{max}} \rangle = c + D \ln E$$

