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An artist’s impression of a High Mass X-ray Binary. Credit: NASA/CXC/M Weiss.
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ABSTRACT

Identifying X-ray binary (XRB) candidates in nearby galaxies requires distinguishing
them from possible contaminants including foreground stars and background active
galactic nuclei. This work investigates the use of supervised machine learning algo-
rithms to identify high-probability X-ray binary candidates. Using a catalogue of 943
Chandra X-ray sources in the Andromeda galaxy, we trained and tested several clas-
sification algorithms using the X-ray properties of 163 sources with previously known
types. Amongst the algorithms tested, we find that random forest classifiers give the
best performance and work better in a binary classification (XRB/non-XRB) context
compared to the use of multiple classes. Evaluating our method by comparing with
classifications from visible-light and hard X-ray observations as part of the Panchro-
matic Hubble Andromeda Treasury, we find compatibility at the 90% level, although
we caution that the number of source in common is rather small. The estimated prob-
ability that an object is an X-ray binary agrees well between the random forest binary
and multiclass approaches and we find that the classifications with the highest confi-
dence are in the X-ray binary class. The most discriminating X-ray bands for classifi-
cation are the 1.7-2.8, 0.5-1.0, 2.0-4.0, and 2.0-7.0 keV photon flux ratios. Of the 780
unclassified sources in the Andromeda catalogue, we identify 16 new high-probability
X-ray binary candidates and tabulate their properties for follow-up.
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Introduction
Definition of XRBs

X-ray binary system

l

Compact Object (Accretor) + Companion Star (Donor)

R TN

Black Hole Neutron Star White Dwarf



Introduction
Classification of XRBs

X-ray binary systems are classified mainly by the mass of companion star

e N

Low Mass X-ray Binaries High Mass X-ray Binaries
LMXBs HMXBs
Companion star: M <1 M_ Companion star : M > 10 M_
Spectral type : Later than B Spectral type : O or B
Accretion through a Roche Lobe overflow Accretion through stellar wind

XRBs can also be categorized by the type of compact object accreting material from the
companion star



Introduction

Why should one study the XRBs ?
Excellent labs of extreme physics + Tracers of galaxy properties !
HMXBs LMXBs
Tracers of current star formation in a Tracers of past star formation and current
galaxy stellar density in a galaxy

® XLFs of sources within star-forming e Low mass stars comprise the bulk of any stellar
galaxies are dominated by contributions population in a galaxy
of these XRBs.

e Are found in the globular clusters of galaxies
due to high stellar densities which enable
dynamical encounters

e In the Galaxy, cluster spatially close to
active star-forming complexes

Accurate determination of the XRB number in a population is required !



Introduction
Why should one study the XRBs ?
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Fig.1 Distribution of LMXBs (open circles) and HMXBs (filled circles) in the Galaxy. In
total 86 LNMXBs and 52 HMXBs are shown. Note the significant concentration of HMXBs
towards the Galactic Plane and the clustering of LMXBs in the Galactic Bulge.

[Grimm et al. , 2003]



Identifying X-Ray Binaries
XRBs population studies in Nearby galaxies vs Milky way

MW: Suffers from distance uncertainties & Dust + gas in the disk obscure our line of sight

Nearby galaxies: All sources in the same distance & Resolving the structure at a favourable
viewing angle without affecting the detection of X-ray source populations (i.e M31)

X-Ray source lists in nearby galaxies contaminated by:
e X-ray active foreground stars in the MW
e Background AGNs
e SNRs

Identification of IR or optical counterparts can solve this problem

BUT

Multiwavelength observations may not be available due to extinction or large distance



Identifying X-Ray Binaries

Solution : Taking advantage of the unique signatures in their X-Ray spectra
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Figure 1. Chandra X-ray spectra of point source types detected
in the direction of M31. The spectral shape of each source type
is unique across the Chandra energy band of 0.5 — 8.0 keV, assum-
ing sufficient source counts. In the low-count regime, advanced
techniques such as ML are required to differentiate sources.

e XRBs: Generally well described by an
absorbed power law with I'~ 1.7

e AGNs: Similar I to XRBs (unobscured
AGNS), T' < 1.7 (heavily absorbed AGNs)

e SNRs: Typically very soft sources
Shell-like & Crab-like: pulsar wind nebulae

e fgStars: X-ray emission due to flares from late
type stars (e.g M-dwarfs)

Traditional classification of X-ray sources:

Unique features to compact objects,
colour-colour diagrams , observations in hard
X-rays

In soft X-rays the distinguishing is difficult !



Machine learning for X-ray source classification

Solution for low energy-resolution X-ray data:
> Application of machine learning supervised algorithms to make optimal use of
information in these energies

Supervised ML algorithms:
> Learn a relationship between a set of measurements and a target variable based on
provided examples

Scientific goals of this work

> Development of an improved automated method for the distinguishing of extragalactic
X-ray binaries based only on their X-ray emission
o Improving the computation of XLF by avoiding contamination of non-XRB
sources
o Identifying new XRB candidates for follow up



X-Ray Data & Features

Sample dataset: “Catalogue of Chandra X-ray sources in M31” [vulic et al,2016]
Energy range: 0.5-8 keV  Total area: ~ 0.6 deg 2

Classified sources: 163 [ 77 XRBs , 43 AGNs , 29 fgStars , 14 SNRs]
Unclassified sources: 780 Table 1. Summary of dataset, propertics

Feature Name # classified  # unclassified
0.5 — 8.0 keV photon flux 163 780
0.5 — 2.0 keV photon flux fraction 163 749
Feamres 2.0 — 8.0 keV photon flux fraction 153 744
(a4 .14 " A 24 0.5 — 1.7 keV photon flux fraction 163 736
. 1.7 — 2.8 keV photon flux fraction 152 679
[ ] 15 photon ﬂuX ratlos 2.8 — 8.0 keV photon flux fraction 147 723
0.5 — 1.5 keV photon flux fraction 162 728
_ 1.5 — 2.5 keV photon flux fraction 156 684
. TOta]‘ phOton ﬂuX 0'5 8 keV 2.5 — 8.0 keV photon flux fraction 149 731
M b d 0.5 — 1.0 keV photon flux fraction 155 634
o earl observe energy 1.0 — 2.0 keV photon flux fraction 163 719
. . 2.0 — 4.0 keV photon flux fraction 148 686
o Mean lnC]_dent energy 4.0 - (}.Q keV photon flux fraction 139 636
6.0 — 8.0 keV photon flux fraction 121 513
0.5 — 7.0 keV photon flux fraction 163 779
) ) 2.0 — 7.0 keV photon flux fraction 152 742
U51ng of fluxes ratios for Mean Observed Energy 163 768
Mean Incident Energy 156 664

distance-independent features

The number of classified and unclassified objects per feature
varies because some objects have feature values set to zero due to
a negative flux or energy being inferred from ACIS EXTRACT.




Algorithms

Logistic regression: Assumes that classes are linearly separable in the features space and try to fit to
probability of class membership - Similar to linear regression

Gaussian naive Bayes: Assumes that all features are conditionally independent given the class label -
Produces conditional class probabilities using Bayesian formulation

SVC: Fits a separating hyperplane in the future space - Classification of features examples
Multi-layer perceptron: A class of Neural Network - Possesses hidden layers that learn between the
feature inputs and the fitted output - Learns well non - linear functions

Random Forest classifier: A collection of a large number of decision trees
m  During the training process uses randomly-selected data subsets of the initial sample
m Random subsets of features are used in each node of the decision tree

Y YV VYV Y

[Belgiu & Dragut , 2016]

Each tree in the forest suggest a class — Majority vote — Final prediction

assign class (majority vote)




Methodology

Classification scheme

Multiclass classification Binary classification
o C(lasses: XRB, AGN, fgStar, SNR e C(lasses: XRB, non XRB
Primary goal: Identification of new XRBs candidates
Evaluation of the viability of classification 2 classes: improvement of the algorithms performance (init. sample <
across multiple object types 200)

Algorithm implementation & evaluation
METRICS

e Split classified samples 70% train - 30% test

e Basic optimization of the hyper-parameters TP+ TN
> K-fold cross-validation on the entire dataset Accuracy = TP+TN + FP+ FN
o Dataset partitioned to k subsamples
o k-1for training and k for test Precision = oLl

ITP+FFP
TP
TP+ FN

o  cv score: Average accuracy
Recall =



RESULTS

Multiclass classification

able 2. Algorithm Evaluation, multiclass case Table 3. Confusion matrix for sklearn random forest, multiclass
case
Algorithm Accuracy  Precision Recall CV Score Actual Class
Logistic Regression ). ).5: 0.54 +0.04 __ AGN SNR  fgStar XRB Total
Naive Bayes 0.52+0.07 AGN 5 0 2 2 9
Support Vector Class. ). 4¢ ).4: (.55 + 0.04 Pisdiaiad s SNR 0 1 0 4
Random Forest (sklearn) 65+ 0. S T fgStar 3 5 10
] K : ; i XRB 6 4 26

Random Forest (R) ).6 0.6 0.60  0.66+0.07 Total 14 2 49

e Generally poor performance metrics e Most of misclassifications are from:

for the algorithms fgStars & SNRs
e RF: Best performance
e MPNN : Poorest performance WHY ¢

e Underepresented classes
e Spectroscopically similar



RESULTS
Binary classification

Table 5. Algorithm Evaluation, binary case Table 6. Confusion matrix for sklearn random forest, binary case

st

0.66 +0.06 Actual Class

0.74 £0.09 XRB non-XRB  Total
0712008 : 5 XRB 15 5 20
0.75 f0.0S Predicted C lEL\S W‘ 29

2
Random Forest (R) 0.86 0.7¢ 0.86 0.89 0.79 £0.06 Total 17 32 49

® Accuracy is improved for all algorithms
e RF: Best performance with higher score than the multiclass
approach
e For XRBs the number of misclassified objects is the same with
multiclass approach
e The overall number of misclassifications is reduced
—— Logistic Regression

ROC curves | Naive

Support Vector Classification
Random

TPR= TP/TP+FN RF again has the best overall ’ Mulidayer Ptception NN
FPR= FP/FP+TN performance ! : AUC =05

T T
0.4 0.6

Ideal case : TPR =1 & FPR =0 * iiae Bositive Rate




RESULTS

Classification validation by crossmatching

Goal: Comparison the RF’s classification
strength with classifications based on other
wavelengths. (e.g optical)

1st step : Application of RF method to 780 X-ray
sources (unseen data) [ Vulic et al. 2016]

2nd step: Matched the 780 newly classified X-ray
sources with those from 3 X-ray surveys in M31
41 matches in total

3rd step : Comparison of these 41 RF classified
sources with the classifications of their optical
counterparts in the PHAT survey

Wilicls

AndPro)

ChandraPHAT
s NuSTAR

RA [deg]

Figure 2. Chandra Hubble and NuSTAR sources in M31. Red
squares: unclassified Chandra sources from Vulic et al. (2016),
grey dots: Andromeda Project non-stellar (HS7T') sources from
Johnson et al. (2015), black crosses: Chandra-PHAT sources from
Williams et al. (2018), blue triangles: NuSTA R-Chandra sources
from Lazzarini et al. (2018). Not shown here are sources in an



RESULTS

Compatibility criteria for X-ray and Optical
Classification schemes

i i i . . Numbers of objects with compatible classifications
X-ray Compatible with Incompatible with Compatibility score = %
source optical source optical source lotal number of objects
XRB optical point foreground stars,SNRs
sources,

non-detection, star
clusters, unknown

Compatibility score

Non XRB | All types of Hubble Star clusters

sources
- 0
AGN optical point Star clusters, foreground 31l41 91 /0
sources, stars, SNRs
non-detection,galaxi
es,unknown RF classifications are in agreement
fgStar | foreground stars All other types with classifications based on non

X-ray properties !
SNR SNRs All other types y prop
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Probability

P4

Probability of Class NMembership

e SNR & fgStar : Peak at low Probability values P(XRB) in binary classification & multiclass classification

XRB & AGN : Peak at higher values. Difficulty to

separate these classes 1 e ol Qg EamEt

19 XRBs candidates with P(XRB)> 90% ! 16 XRBs candidates with P(XRB) > 90% !



RESULTS
Most important X-ray features

The most important features during the training of RF classifier are the Photon Flux
ratios for the X-ray bands:

Not expected result !

Less common bands in traditional hardness ratio analyses !

1.7-2.8 keV
05-1 keV Narrower bands are expected to be less useful

2.0-4.0 keV /
2.0-70 keV Detailed interpretation of these bands in a future work



TAKE HOME MESSAGE

RF forest classifier is the best among other supervised algorithms , with an
accuracy ~85 % (binary case)

16 new strong (P(XRB) > 90 % ) XRB candidates are suitable for follow up

Cross-matching previously unclassified sources X-ray sources with sources
classified using PHAT resulted in compatibility score ~ 91 %

The narrower and less commonly used bands as 1.7-2.8 , 0.5-1.0 , 2.0-4.0 &
2.0-7.0 keV photon flux ratios are the most important for the classification



