The SS 433 Jets and their Ni Abundance

Herman L. Marshall, Claude R. Canizares, Norbert S. Schulz, Sebastian Heinz (MIT Kavli Institute)

SS 433 Background

 $= 1 + z = \gamma (1 \pm \beta \cos \alpha)$

- ${\color{black} \bullet}$ Periodically Doppler shifting H H HeI and H ${\color{black} \beta}$
- Only jet known to contain baryons
- Model: oppositely directed jets at 0.26 c
 - Precession period: 162 days
 - Orbital period: 13.08 days
 - Radio: verifies model and sets orientation

SS 433 Background

 $= 1 + z = \gamma (1 \pm \beta \cos \alpha)$

- ${\color{black} \bullet}$ Periodically Doppler shifting H H HeI and H ${\color{black} \beta}$
- Only jet known to contain baryons
- Model: oppositely directed jets at 0.26 c
 - Precession period: 162 days
 - Orbital period: 13.08 days

Radio: verifies model and sets orientation

SS 433 Background

 $= 1 + z = \gamma (1 \pm \beta \cos \alpha)$

- ${\color{black} \bullet}$ Periodically Doppler shifting H H HeI and H ${\color{black} \beta}$
- Only jet known to contain baryons
- Model: oppositely directed jets at 0.26 c
 - Precession period: 162 days
 - Orbital period: 13.08 days

Radio: verifies model and sets orientation

Jet Physics from Lines

Line Doppler shifts not in acceleration zone all ions accelerated to same speed Line widths not in nozzle or flaring zone opening half-angle is constant at 0.75° Line strengths collisionally heated plasma, kTb = 15 keV EM(T), test cooling models with continuum, get abundances Si XIII triplet: electron density ~ 10¹⁴ cm⁻³

5 /12

5 /12

7 /12

7 /12

7 /12

7 /12

7 /12

7 /12

7 /12

Spectral Modeling

Crete, Oct. 13, 2010

^{8 /12}

Spectral Modeling

Crete, Oct. 13, 2010

^{8 /12}

Spectral Modeling

Crete, Oct. 13, 2010

Conclusions

X-ray region cooling time < 5000 s</p> Radiative cooling of thermal plasma < 10 s X-ray emission < 4 x 10¹³ cm (0.05 mas) from shocks that redirect jet and heat gas spectral fit: $r_{min} = 5 \times 10^{11}$ cm, $L_{jet} = 3 \times 10^{39}$ erg/s ($L_x \sim 10^{35}$) Jet redirected on 0.2d time scale by 2° Blue, red jets different Perturbed by local effects where jet is directed --> supports a redirection model Eclipsed region spectrum: hard, weak Fe XXV line Most of jet is not eclipsed; > 2×10^{12} cm from disk Supports redirection model (or internal shocks) Ni overabundance, enhanced metals --> gas from companion that was coated with SN products Herman L. Marshall – SS 433 Crete, Oct. 13, 2010 10/12

Over raki, one of the Cretan locals points out errors in Titarchuk's saturation model.