Population Modeling for X-Ray Binaries

Vicky Kalogera

Dept. of Physics & Astronomy and Center for Interdisciplinary Exploration and Research in Astrophysics with Tim Linden, Tassos Fragos, & Chris Belczynski

XRBs @Crete - 2010

In this talk ...

Where does the future lie ?

Population Modeling

Current status: observationally-driven Current observations provide an excellent challenge and opportunity for progress in the study of global XRB population properties.

Population Synthesis Calculations: necessary Basic Concept of Statistical Description: evolution of an ensemble of binary and single stars with focus on XRB formation and their evolution through the X-ray phase.

X-ray Binary Formation involves long binary evolution sequences of stages

X-ray Binary Formation involves long binary evolution sequences of stages

example:

courtesy Sky & Telescope Feb 2003 issue

primordial binary

Common Envelope: orbital contraction and mass loss

NS or BH formation X-ray binary at Roche-lobe overflow

Star formation conditions: SFR as a function of time: continuous vs starburst metallicity Initial Mass Function binary properties (mass ratios, orbital separations)

Star formation conditions:> SFR vs time, metallicity, IMF, binary properties

Modeling of single and binary evolution
mass, radius, core mass, wind mass loss
orbital evolution: e.g., tidal synchronization and circularization, mass loss, mass transfer
mass transfer modeling: stable driven by nuclear evolution or angular momentum loss thermally unstable or dynamically unstable
compact object formation: masses and supernova kicks

> X-ray phase: evolution of mass-transfer rate

and X-ray luminosity - transients!

CIE

Star formation conditions:> SFR vs time, metallicity, IMF, binary properties

Modeling of single and binary evolution

> mass, radius, core mass, wind mass loss

- > orbital evolution: e.g., tidal synchronization and circularization, mass loss, mass transfer
- > mass transfer modeling:

stable driven by nuclear evolution or angular momentum loss thermally unstable or dynamically unstable

- > compact object formation: masses and supernova kicks
- > X-ray phase: evolution of mass-transfer rate

and X-ray luminosity - transients!

CIE

Star formation conditions:> SFR vs time, metallicity, IMF, binary properties

Modeling of single and binary evolution

> mass, radius, core mass, wind mass loss

- > orbital evolution: e.g., tidal synchronization and circularization, mass loss, mass transfer
- mass transfer modeling:

stable driven by nuclear evolution or angular momentum loss thermally unstable or dynamically unstable

- > compact object formation: masses and supernova kicks
- > X-ray phase: evolution of mass-transfer rate

and X-ray luminosity - transients!

Star formation conditions:> SFR vs time, metallicity, IMF, binary properties

Modeling of single and binary evolution

- > mass, radius, core mass, wind mass loss
- > orbital evolution: e.g., tidal synchronization and circularization, mass loss, mass transfer
- > mass transfer modeling: stable driven by nuclear evolution or angular momentum loss thermally unstable or dynamically unstable
- compact object formation: masses and supernova kicks
- > X-ray phase: evolution of mass-transfer rate

and X-ray luminosity - transients!

CIE

Star formation conditions:> SFR vs time, metallicity, IMF, binary properties

Modeling of single and binary evolution

- > mass, radius, core mass, wind mass loss
- > orbital evolution: e.g., tidal synchronization and circularization, mass loss, mass transfer
- > mass transfer modeling:
- stable driven by nuclear evolution or angular momentum loss thermally unstable or dynamically unstable
- > compact object formation: masses and supernova kicks
- > X-ray phase: evolution of mass-transfer rate

and X-ray luminosity - transients!

CIE

Population Synthesis Codes

Scenario Machine (Tutukov, Prokhorov, Postnov, Popov)

SeBa (Portegies Zwart, Yungel'son, Nelemans)

StarTrack (Belczynski, Kalogera, Bulik, Taam, Rasio)

BSE (Hurley, Kiel, Bailes)

Population Synthesis Codes

Scenario Machine (Tutukov, Prokhorov, Postnov, Popov)

SeBa (Portegies Zwart, Yungel'son, Nelemans)

StarTrack (Belczynski, Kalogera, Bulik, Taam, Rasio)

BSE (Hurley, Kiel, Bailes)

<u>Population synthesis</u>: "so many parameters ..."

YES, there's many! and they come in two main flavors
 extended simulation grids: <u>necessary</u>
 simulation results depend only on SOME of them

LMXBs: common envelope, NS kicks, mass ratios
 HMXBs: stellar winds, mass ratios, BH kicks

absolute normalizations are the roughest

Population Models: what do we compare to?

- numbers of XRBs (different types, SF conditions)
 - relative comparisons more meaningful
 absolute comparisons need huge parameter studies

XLF shapes

mass-transfer-rate calculation X-ray band corrections & sensitivity Eddington limit treatment of transients & Be phenomenon and bursts state transitions and "small" Lx variations XRB binary properties orbital periods, donors, MT driver, spins, spatial dist. Selection Biases!

CIER

Extragalactic X-Ray Binary Populations

» Starbursts: dominated by recent/ongoing burst of star formation, and young HMXBs

» Spirals: mix of ages and metallicities mix of LMXBs and HMXBs

» Ellipticals: clean samples of old LMXBs (??) and there's globular clusters ...

Be-HMXBs and electron-capture SN (ECS)?

solar binaries metallicity initial Lx > 1e32erg/s million per of HMXBs Number

CIERA

Subied

te: October 13, 2010 5:06:07 P

1 Attachment, 29.9 KB

Vicky Kalogera <vicky@northwestern.edu>

Be-HMXBs and electron-capture SN (ECS) in the SMC ?

in Starbursts

Be-phenomenon modeling is needed ...

CIERA

Be-HMXBs and electron-capture SN (ECS) in the SMC ? ECS kicks are expected to be low

note fromM.Coe's talk

CIER

<u>HMXBs in Young Starbursts</u>

CIERA

Age and Metallicity effects

<u>HMXBs in Young Starbursts</u>

Age and Metallicity effects on HMXB relative numbers in young starbursts

CIERA

<u>HMXBs in Young Starbursts</u>

Age and Metallicity effects on HMXB <u>relative numbers</u> in young starbursts

Age and Metallicity effects on HMXB <u>XLF shapes</u> in young starbursts

Date: October

Cumulative Number / SFR Linden et al 2010

CIERA

AZZ BEFRICH Starbursts

Age and Metallicity effects on HMXB <u>XLF shapes</u> in young starbursts

1 Attachment, 45.6 KB

<u>-IMXBs in Starbursts</u>

CIERA

Age and Metallicity effects on HMXB XLF shapes in young starbursts

Grimm et al 2003: Universal XLF normalized to SFR

Sample restricted in age & metallicity ??

CIER

ULXs & Metallicity Linden et al 2010 υ Z=Z₀ $L_x > 1 \times 10^{39} \text{ erg s}^{-1}$ -----Z=0.4 Z_o 6 --Z=0.2 Z_o -Z=0.05 Z_o Z=0.02 Z 4 2 $L_x > 1 \times 10^{39} \text{ erg s}^-$ 0 0 0.8 Time : 0.6 0.4 0.2 0 1-----10 20 30 40 0 Compact Object Mass (M_o) CIERA

NORTHWEST<u>ern</u>

<u>ULXs & Metallicity</u>

Extragalactic LMXB populations: Models for the elliptical galaxies NGC3379 and NGC4278

Fragos, VK, Belczynski, Fabbiano, Brassington, Kim, Zezas, ...

credit: NASA/UMass/Z.Li & Q.D.Wang/U.Leicester/U.London/R.Soria & K.Wu.

XLFs in elliptical galaxies: NGC3379 and NGC4278

~1 Ms Chandra monitoring survey (PI: G. Fabbiano)

Kim, D.-W. et al. 2006, Brassington, N. et al. 2008,2009 C

Field LMXB models I

Some models are consistent with the observed XLF both in shape and normalization

Comparison with observations excludes widely used assumptions (magnetic braking, transients)

CIER

Field LMXB models II

Fragos et al. 2008

Different LMXB sub-populations contribute to **different X-ray luminosity ranges** of the XLF.

Fragos et al. 2008

CIER

We find that field LMXB populations can have an important contribution to the observed XLFs of elliptical galaxies.

O Different LMXB sub-populations contribute to different X-ray luminosity ranges of the XLF.

At X-ray luminosities above 10³⁷ erg/s, NSs with RG or WD donors dominate the XLF.

The ratio of transient to persistent sources is ~20.
Realistic modeling of the outburst phase of transient LMXBs is necessary.

Population Synthesis Modeling what to expect in the near future ... from Tassos Fragos (CfA/ITC) and collaborators Iive, self-consistent stellar evolution and mass transfer Treatment of mass transfer in eccentric binaries coupling to full stellar dynamics: cluster modeling ...