X-ray Properties of High Mass X-ray Binaries

Frank Haberl

Max-Planck-Institut für extraterrestrische Physik Garching

• Spin period evolution (accretion physics)

• X-ray spectra (structure of stellar winds)

High Energy View of Accreting Objects: AGN and X-ray Binaries Agios Nikolaos, Crete, Greece, October 5-14, 2010

High Mass X-ray Binaries (HMXBs)

*WDs should dominate according to population synthesis models but no clear case (low-L_x systems \rightarrow de Oliveira et al. 2006; SSS+Be \rightarrow Kahabka et al. 2006)

HMXBs in the Milky Way and nearby galaxies

227 HMXBs and candidates 130 pulsars

MW: Liu et al. 2006 SMC: Haberl & Pietsch 2004; Coe et al 2004 + new discoveries LMC: Negueruela & Coe 2002; Shtykovskiy & Gilfanov 2004 + new discoveries

HMXBs in the Milky Way

HMXBs in the Small Magellanic Cloud (MW)

... and steadily increasing

Distribution in the SMC

HI map Stanimirovic et al. (1999)

77 HMXBs with good position51 known pulse period26 properties of Be/X-ray binary - unknown pulse period

HMXBs and Star Formation History

HMXBs in regions with star formation bursts 25-60 Myrs ago
number of HMXBs correlates with SFR at 42 Myr

Antoniou et al. 2010 - See talk

Transient Be/X-ray binaries

- Short (a few days) X-ray outbursts ($L_x \sim 10^{36 37} \text{ erg s}^{-1}$) separated by the orbital period generally (not always) occurring near the periastron passage of the NS (type I)
- Giant X-ray outbursts (L_x > 10³⁷ erg s⁻¹) lasting several weeks (type II) Be disc loss
- Periods of quiescence with $L_x \sim 10^{33} \text{ erg s}^{-1}$

Orbital periods – X-rays

- Orbital parameters from X-ray timing (Doppler modulation of spin period) Milky Way, RXTE monitoring of SMC pulsars → Poster by Townsend et al.
- Long term monitoring of outburst behaviour (X-ray and optical)

Laycock et al. 2005

Galache et al. 2008

Orbital periods – optical

Spin periods

Orbital period – spin period: observations

Updated version of the $P_{orb} - P_{spin}$ diagram (Corbet et al. 1986)

Spin Period Evolution

Figure 1. The *B*–*P* tracks of a neutron star during the main-sequence evolution of the companion: $\tau_{\rm ms} = 10^7 \,{\rm yr}$, $V_{\rm w} = 10^7 \,{\rm cm \, s^{-1}}$, $\rho_0 = 10^{13} \,{\rm g \, cm^{-3}}$, Q = 0.01, $\zeta = 0.1$. In the case of a strong initial magnetic field ($B_0 = 10^{13} \,{\rm G}$), tracks are calculated for $\dot{M} = 10^{-10}$ (curve 1), 10^{-11} (2) and $10^{-12} \,{\rm M_{\odot} \, yr^{-1}}$ (3); in the case of a weak field ($B_0 = 10^{12} \,{\rm G}$) for $\dot{M} = 10^{-10}$ (4) and 10^{-11} (5). Numbers near the tracks indicate the logarithm of the phase transition time. Filled circles mark the ends of tracks.

Model	B ₀ [G]	M [M _☉ /y]
1	10 ¹³	10 ⁻¹⁰
2	10 ¹³	10 ⁻¹¹
3	10 ¹³	10 ⁻¹²
4	10 ¹²	10 ⁻¹⁰
5	10 ¹²	10 ⁻¹¹

• quasi-isolated magnetic dipole braking

propellor phase

magnetospheric radius > corotation radius efficient braking critical spin period depends on spin period mass loss (magnetic pressure = ram pressure)

wind accretion

Roche-lobe overflow

Urpin et al. 1998

Transition to centrifugally inhibited regime

4U 0115+63 (Campana et al. 2001)

- low variability during quiescence and outburst
- quiescent level 2 x 10³³ erg s⁻¹
- large variability in transition from low to high state (factor 250 in 15 hrs) difficult to explain with direct accretion

2 systems in propeller state: (different X-ray spectrum, no pulsations)
4U 0115+63: 3.6 s / (0.8-2) x 10³³ erg s⁻¹
V 0332+53: 4.4 s / ~5 x 10³² erg s⁻¹
(Campana et al. 2002)

Critical period for propeller – accretor transition magnetospheric radius = corotation radius $P_A = 2^{5/14} \pi (G/M)^{-5/7} (\mu^2/\dot{M})^{3/7}$ (Popov & Raguzova 2004)

3A 0535+262: 104 s

(1.5–4) x 10³³ erg s⁻¹ by RXTE and BeppoSAX

pulsations detected during one observation, powerlaw spectrum

B = 10^{13} G \rightarrow magnetospheric radius > corotation radius

still very low level accretion?

(Mukherjee & Paul 2004)

Roche-lobe filling supergiant systems

Persistent and bright ($L_x \sim 10^{38} \text{ erg s}^{-1}$) matter flow via an accretion disc long-term spin up

Secular spin-up 8 x 10⁻¹³ Hz s⁻¹
Factor of ~5 slower than predicted
Phases of spin-down (Bildsten et al. 1997)

Cen X-3

10-100 day intervals with transitions between steady spin-up and spin-down at predicted rates with net spin-up on long terms models with angular momentum transport outwards while accretion is going on magnetic interaction disk/star (Bildsten et al. 1997)

Wind accreting supergiant systems

Persistent - often eclipsing - $L_x \sim 10^{35-37}$ erg s⁻¹ accretion from strong stellar wind of supergiant

random walk in frequency (Bildsten et al. 1997)

Be/X-ray binaries: Spin-up during outbursts

Type I outbursts

typical spin-up rates <5 x 10⁻¹² Hz s⁻¹

Type II outbursts

typical spin-up rates >8 x 10⁻¹² Hz s⁻¹

(e.g. Bildsten et al. 1997)

XTE J1946+274 = GRO J1944+26 (Wilson et al. 2003)

Time(Days past JD2451504.5)

Persistent Be/X-ray binaries

- moderate luminosity of 10 ³⁴⁻³⁵ erg s⁻¹
- relatively small long-term variability
- long pulse periods (large orbit, low eccentricity)
- absent or weak Fe K_{α} emission line @ 6.4 keV
- no dependence of the X-ray spectrum on intensity

\frown	
	o)
	\setminus
A0535+26, 110 d, 0.47	4U 0352 + 309, 250 d, 0.11
\bigcirc	(•)
25 1417-624, 42 d, 0.45	EXO 2030 + 375, 46 d. 0.37
°	\odot
	A0535+26, 110 d, 0.47 0 25 1417-624, 42 d, 0.45 0

4U 0115+63, 24.3 d. 0.34

RX J0146.9+6121

Others

Long-period pulsars in the SMC (Haberl & Pietsch 2004) 348345 s 345 (Haberl & Pietsch 2005) SAX J0103.2-7209 RX J0103.6-7201 342756 3×10^{-12} 755 s 394 d 0.2-10.0 keV Flux (erg cm⁻² s⁻¹) Period (s) 753750 2×10^{-12} AX J0049.5-7323 327 323 s 324 10^{-12} 1323 s 321 AX J0051-733 3180 4.9×10^{4} 5×10^{4} 5.1×10^{4} 5.2×10⁴ 5.3×10^{4} 500 1000 1500 2000 MJD (days) Julian Day (-2450000)

SAX J0103.2-7209 345 s

Eger & Haberl 2008

- Luminosity ~4x10³⁵ erg s⁻¹
- Linear pulsar spin-up abruptly ceased after May 2002 but no change in luminosity
 - reversal in disc torque ?
 - pulsar reached equillibrium period ?

But ...

The transient XTE J1543–568

Porb = 75.56 ± 0.25 days e < 0.03 (in 't Zand et al. 2001)

similarly: KS 1947+300 Porb = 40.415 ± 0.010 days e = 0.033 ± 0.013 (Galloway et al. 2004)

Orbital period – spin period: theory

Porb – Pspin diagram (Corbet et al. 1986)

Critical (equilibrium) spin period

Wind-fed SG-HMXBs:

- wind-driven accretion torques not sufficient to spin-up NS
- equilibrium spin period of main-sequence phase

Be/X-ray binaries:

 between equilibrium line for slow equatorial wind and the line for fast polar wind (selection effect for active systems)
 wide systems (>100 d) as in SG systems

Waters & van Kerkwijk (1989) Li & van den Heuvel (1996)

Orbital period – spin period: observations

Updated version of the $P_{orb} - P_{spin}$ diagram (Corbet et al. 1986)

The X-ray spectra of HMXBs

X Persei (Be/X-ray binary) La Palombara & Mereghetti 2007 Direct emission from the NS: power-law (with high-E cutoff) photon index ~ 0.9-1.0 (0.1-10 keV)

• Reprocessing in wind: optically thin emission emission lines

scattering on free electrons

• Reprocessing at inner edge of accretion disk:

optically thick emission

Reprocessing in strong wind driven by the UV radiation of the O supergiant - Fe K lines

- soft component

clearly seen during eclipse

4U1700-37 (supergiant system) Haberl et al. 1992

Schulz et al. 2002 Vela X-1 Fluorescent lines from

clumped wind

Soft components in X-ray spectra of Be/XRBs

RX J0103.6-7201 (B0 III-Ve in SMC) 1323 s Eger & Haberl 2008

A near-eclipse?

Hickox et al. (2004):

- L_x > 10³⁸ erg s⁻¹: Inner region of accretion disk
- Lower luminosities: Diffuse gas in system

Haberl & Pietsch (2005):
Correlation of low-energy and power-law component intensities
One single process?

X-ray absorption

Haberl et al. (2008): Be/XRBs in the SMC

General increase of nH with total SMC column density

A significant fraction of the X-ray absorption arises in ISM

Summary

Large samples of HMXBs are available (~100)

Milky Way: Physics of individual systems (High-resolution spectroscopy, timing) Accretion process Wind structure SMC: Statistical studies observations of many systems simultaneously at similar distance global properties population studies

We understand the global picture but not all the details. Monitoring with RXTE (timing) High-sensitivity imaging instruments Chandra, XMM-Newton (spectroscopy)