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X-ray Properties
 

of 
High

 
Mass

 
X-ray

 
Binaries
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• Spin period evolution (accretion physics)
• X-ray spectra (structure of stellar winds)



High Mass
 

X-ray
 

Binaries
 

(HMXBs)

Early type star + accreting compact object
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HMXBs

Supergiant
Systems

Be/X-ray
Binaries

Roche-lobe
Overflow

Wind 
Accretion

BH / NS NS / WD*

*WDs should dominate according to population synthesis models
but no clear case (low-Lx

 

systems → de Oliveira et al. 2006;  SSS+Be → Kahabka et al. 2006)

1033-1038

 

erg/s

1036

 

erg/s1038

 

erg/s



HMXBs
 

in the
 

Milky
 

Way and nearby
 

galaxies
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227 HMXBs
 

and candidates      130 pulsars
MW: Liu

 

et al. 2006
SMC: Haberl

 

& Pietsch 2004; Coe

 

et al 2004 + new discoveries
LMC: Negueruela & Coe 2002; Shtykovskiy & Gilfanov 2004 + new discoveries



113           (66 pulsars)

HMXBs
 

in the
 

Milky
 

Way
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HMXBs

Supergiant
Systems

Be/X-ray
Binaries

Roche-lobe
Overflow

Wind 
Accretion

52

1 18

20

Exotic Systems:
Cyg

 

X-1 (focussed

 

wind)
Cyg

 

X-3 (Wolf-Rayet)
LS 5039 (micro-quasar)
SS 433 (micro-quasar)



89           (55 pulsars)

HMXBs
 

in the
 

Small Magellanic
 

Cloud
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HMXBs
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Be/X-ray
Binaries
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Overflow

Wind 
Accretion

78
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1
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20 52

1 18

(MW)



... and steadily increasing

6

55 pulsars
50 with good positions

XMM-Newton survey 

of the SMC



Distribution in the
 

SMC
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77 HMXBs
 

with good position
51 known pulse period
26 properties of Be/X-ray binary -

 
unknown pulse period

HI map

Stanimirovic

 

et al. (1999)



HMXBs and Star Formation History

8

• HMXBs
 

in regions with star formation bursts 25-60 Myrs
 

ago
• number of HMXBs

 
correlates with SFR at 42 Myr

Antoniou et al. 2010 -
 

See talk



Transient
 

Be/X-ray
 

binaries
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• Short

 

(a few

 

days) X-ray

 

outbursts

 

(Lx

 

~ 1036

 

-

 

37

 

erg

 

s-1) 

separated

 

by

 

the

 

orbital period

 

generally

 

(not

 

always) occurring

 

near

the

 

periastron

 

passage

 

of the

 

NS (type

 

I)

• Giant X-ray outbursts (Lx

 

> 1037 erg

 

s-1) lasting

 

several

 

weeks

 

(type

 

II)

Be disc

 

loss

• Periods

 

of quiescence

 

with

 

Lx

 

~ 1033

 

erg

 

s-1

A 0538-66 in ROSAT survey

(Mavromatakis

 

& Haberl

 

1993)



Orbital
 

periods –
 

X-rays
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Laycock et al. 2005

• Orbital parameters from X-ray timing (Doppler modulation of spin period)
Milky Way, RXTE monitoring of SMC pulsars → Poster by Townsend et al.

• Long term monitoring of outburst behaviour (X-ray and optical)

Galache et al. 2008

~9 year coverage



Orbital
 

periods –
 

optical
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Schmidtke et al. 2006 (OGLE-III)

MACHO / OGLE monitoring of Be counterparts to SMC HMXBs

See poster by
Rajoelimanana



Spin periods
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MW:  113

 

HMXBs

 

+ candidates
66

 

pulsars
SMC:  89

 

HMXBs

 

+ candidates
55

 

pulsars
LMC: 25

 

HMXBs

 

+ candidates
9

 

pulsars

• Peak between 100 s and 1000 s
• Bimodal structure in the spin distribution?

→ talk by Malcolm Coe



Orbital period
 

–
 

spin
 

period: observations
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2S0114

OAO1657
LMC X-4

SMC X-1

Cen

 

X-3

SAX J1802.7

SAX J2103.5

RXJ0648

SAX J0635.2

A0535

Updated version of the Porb

 

– Pspin

 

diagram

 

(Corbet

 

et al. 1986)



Spin Period
 

Evolution
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• quasi-isolated
magnetic dipole braking

• propellor
 

phase
magnetospheric radius > corotation radius
efficient braking
critical spin period depends on

spin period
mass loss (magnetic pressure = ram pressure)

• wind
 

accretion

• Roche-lobe
 

overflow

Urpin

 

et al. 1998

Model      B0

 

[G]       M [Mʘ/y]

1           1013

 

10-10

2           1013

 

10-11

3           1013

 

10-12

4           1012

 

10-10

5           1012

 

10-11

·



Transition to centrifugally inhibited regime
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4U 0115+63  (Campana et al. 2001)

• low

 

variability

 

during

 

quiescence

 

and outburst

• quiescent

 

level

 

2 x 1033

 

erg

 

s-1 

• large

 

variability

 

in transition

 

from

 

low

 

to high state

 

(factor

 

250 in 15 hrs)

difficult to explain with direct accretion

• transition

 

from

 

propeller

 

to accretion

 

regime?
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3A 0535+262: 104 s

(1.5–4) x 1033

 

erg

 

s-1

 

by

 

RXTE and BeppoSAX

pulsations

 

detected

 

during

 

one

 

observation, powerlaw

 

spectrum

B = 1013

 

G → magnetospheric

 

radius

 

> corotation

 

radius

still very

 

low

 

level

 

accretion?

 

(Mukherjee

 

& Paul 2004)

2 systems in propeller state:

(different X-ray spectrum, no pulsations)

4U

 

0115+63:    3.6 s / (0.8–2) x 1033

 

erg

 

s-1

V

 

0332+53:      4.4 s / ~5 x 1032

 

erg

 

s-1

(Campana

 

et al. 2002)

Critical period for propeller –

 

accretor transition
magnetospheric radius = corotation radius
PA

 

= 25/14

 

π

 

(G/M)-5/7

 

(μ2/M)3/7

(Popov

 

& Raguzova

 

2004)

□

·



Roche-lobe
 

filling
 

supergiant
 

systems
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Persistent

 

and bright

 

(Lx

 

~ 1038

 

erg

 

s-1) 

matter flow

 

via an accretion

 

disc

long-term

 

spin

 

up

(Bildsten

 

et al. 1997)

• Secular

 

spin-up

 

8 x 10-13

 

Hz s-1

• Factor

 

of ~5 slower

 

than

 

predicted

• Phases of spin-down

Cen X-3



Cen
 

X-3
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BATSE

10-100 day

 

intervals

 

with

 

transitions

 

between

 

steady

 

spin-up

 

and spin-down

at predicted

 

rates

 

with

 

net

 

spin-up

 

on long

 

terms

models

 

with

 

angular

 

momentum

 

transport

 

outwards

 

while

 

accretion

 

is

 

going

 

on 

magnetic

 

interaction

 

disk/star

 

(Bildsten

 

et al. 1997)



Wind
 

accreting
 

supergiant
 

systems
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Persistent

 

-

 

often

 

eclipsing

 

-

 

Lx

 

~ 1035-37

 

erg

 

s-1

accretion

 

from

 

strong

 

stellar wind of supergiant

random

 

walk in frequency

(Bildsten

 

et al. 1997)



Be/X-ray binaries: Spin-up during outbursts

20

Type I outbursts

typical

 

spin-up

 

rates

 

<5 x 10-12

 

Hz s-1

Type II outbursts

typical

 

spin-up

 

rates

 

>8 x 10-12

 

Hz s-1

 

(e.g. Bildsten

 

et al. 1997)

XTE J1946+274 = GRO J1944+26     (Wilson et al. 2003)
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GS 1843-02 = 2S 1845-024 
(Finger et al. 1999)

2S 1417-62 
(Inam

 

et al. 2004)



Persistent
 

Be/X-ray
 

binaries
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• moderate

 

luminosity

 

of 10 34 -

 

35

 

erg

 

s-1

• relatively

 

small

 

long-term

 

variability

• long

 

pulse periods

 

(large orbit, low

 

eccentricity)

• absent

 

or

 

weak

 

Fe Kα

 

emission

 

line

 

@ 6.4 keV

• no

 

dependence

 

of the

 

X-ray

 

spectrum

 

on intensity

X

 

Persei

 

835 s

RX

 

J0146.9+6121   1400 s 

RX

 

J1037.5–5647         862 s

RX

 

J0440.9+4431       203 s

1SAX J1452.8-5949      437 s

AX J1749.2-2725          220 s

AX J1700-4157             715 s

Delgado-Marti et al. 2001 



23

(Delgado-Marti et al. 2001)

(Roche et al. 1993)

1971 1993

dP/dt=1.5x10-4 y-1

spin-up               spin-down

■■

X Persei
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(Mereghetti

 

et al. 2000) RX J0146.9+6121

XMM-Newton observation
2004-01-15
Lx

 

= 4.4 x 1033

 

erg s-1

5 x 1034

 

erg s-1

→ Equillibrium

 

period ?Spin-up
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(Haberl

 

& Pietsch 2005)

(Haberl

 

& Pietsch 2004)

Others

1323 s

345 s

755 s  394 d

323 s

Long-period pulsars in the SMC

RX J0103.6-7201
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Eger & Haberl

 

2008
• Luminosity ~4x1035

 

erg s-1

• Linear pulsar spin-up
abruptly ceased after May 2002
but no change in luminosity
-

 

reversal in disc torque ?
-

 

pulsar reached equillibrium period ?

SAX J0103.2-7209
 345 s
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But ...

The transient XTE J1543–568 

Porb

 

= 75.56 ±

 

0.25 days
e < 0.03
(in ‘t Zand

 

et al. 2001)

similarly:
KS 1947+300
Porb

 

= 40.415 ±

 

0.010 days
e = 0.033 ±

 

0.013
(Galloway et al. 2004)



Orbital period
 

–
 

spin
 

period: theory

Critical (equilibrium)

 

spin

 

period

Wind-fed

 

SG-HMXBs:

• wind-driven

 

accretion

 

torques

 

not

 

sufficient

to

 

spin-up

 

NS 

• equilibrium

 

spin

 

period

 

of main-sequence

 

phase

Be/X-ray

 

binaries:

• between

 

equilibrium

 

line

 

for

 

slow

 

equatorial

 

wind 

and the

 

line

 

for

 

fast polar wind 

(selection

 

effect

 

for

 

active

 

systems)

• wide

 

systems

 

(>100 d) as in SG systems

Waters & van Kerkwijk

 

(1989)

Li

 

& van den Heuvel

 

(1996)
28

Porb

 

–

 

Pspin

 

diagram

 

(Corbet

 

et al. 1986)



Orbital period
 

–
 

spin
 

period: observations

13

2S0114

OAO1657
LMC X-4

SMC X-1

Cen

 

X-3

SAX J1802.7

SAX J2103.5

RXJ0648

SAX J0635.2

A0535

Updated version of the Porb

 

– Pspin

 

diagram

 

(Corbet

 

et al. 1986)



The
 

X-ray
 

spectra
 

of HMXBs
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• Direct emission from the NS:

power-law

 

(with

 

high-E

 

cutoff)

photon index ~ 0.9-1.0 (0.1-10 keV)

• Reprocessing

 

in wind:

optically thin emission

emission lines

scattering on free electrons

• Reprocessing at inner edge of
accretion disk:

optically thick emission

X Persei

 

(Be/X-ray binary)
La Palombara

 

& Mereghetti

 

2007
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4U1700-37 (supergiant system)

Haberl

 

et al. 1992  

before eclipse ingress eclipse

Reprocessing

 

in strong wind 

driven by the UV radiation 

of the O supergiant

- Fe K lines

-

 

soft

 

component

clearly seen during eclipse
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(1) recombination

 

lines

 

and 

radiative

 

recombination

 

continuum

from

 

photo-ionized

 

gas  

(2) fluorescent

 

K-shell

 

lines

from

 

(nearly) neutral matter

(3) non-thermal

 

continuum

scattered

 

by

 

free

 

electrons

(Sako

 

et al. 1999)

Vela X-1 (SG system)

ASCA SIS
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Schulz et al. 2002 

Vela X-1

Fluorescent lines from 

clumped wind

Chandra HETGS 
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RX J0103.6-7201 (B0 III-Ve in SMC)

1323 s                  Eger & Haberl

 

2008

A near-eclipse?

Summed spectrum

Soft components in X-ray
 

spectra
 

of Be/XRBs
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Hickox

 

et al. (2004):

• Lx

 

> 1038

 

erg s-1:
Inner region of accretion disk

• Lower luminosities:
Diffuse gas in system

Haberl & Pietsch (2005):
• Correlation of low-energy and power-law 

component intensities
• One single process?
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Haberl

 

et al. (2008): Be/XRBs in the SMC

General increase of nH with total SMC column density

A significant fraction of the X-ray absorption arises in ISM

X-ray
 

absorption

NH

 

= HI



Summary

Large samples of HMXBs are available (~100)

Milky Way: Physics of individual systems 
(High-resolution spectroscopy, timing)
Accretion process
Wind structure

SMC: Statistical studies 
observations of many systems simultaneously at similar distance
global properties
population studies

We understand the global picture but not all the details.
Monitoring with RXTE (timing)
High-sensitivity imaging instruments Chandra, XMM-Newton (spectroscopy)
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