X-ray Binary Formation and Evolution on cosmological timescales

le and set to make the set of the set o

Tassos Fragos

teres and the second of the second second

with M. Tremmel, B. Lehmer, P. Tzanavaris, A. Hornschemeier, V. Kalogera A. Zezas, K. Belczynski

Harvard-Smithsonian CfA

Institute for Theory and Computation

Outline

Motivation

StarTrack and Millennium simulations

Constraining the model with observations

Summary and next steps

Existing Theoretical Models

White & Ghosh 1998 Ghosh & White 2001

New observational constraint and advances in theoretical understanding allow the development of *detailed population synthesis models*

The Largest X-ray Binary Population Synthesis Simulations Ever!

The largest library of X-ray binary PS models with the StarTrack PS code (Belczynski et al. 2008)

O Preliminary parameter space study: 25 PS models for 9 metallicity values and ~20 Million binaries per model **Target parameter space study:** 100 PS models for 9 metallicity values and ~100 Million binaries per model Available computational resources: 300,000 cpu hours @ Quest HPC cluster (NU) **300,000 cpu hours** @ Discover HPC cluster (NCCS) Priority access @ Fugu HPC cluster (astro-NU) **Total of ~1,000,000 cpu hours**

Modeling the X-ray Luminosity from a Single Stellar Population

The Millennium Simulation

Springel et al. 2005

Semi-analytical galaxy catalogue by De Lucia et al. 2006

Stellar mass, SFR, gas mass, type, and metallicity as a function of time for all galaxies in a 62.5Mpc³/h volume

Bouwens et al. 2004 Marchesini et al. 2009

Combining the two simulations

- From the Millennium Simulation we track the new stellar mass formed at each metallicity bin as a function of time.
- Using the StarTrack models, we add new stellar population according to the star formation history
- The resulting XRB population is a mix of populations at different ages and different metallicities

LMXB: $M_{donor} < 2M_{\odot}$

IMXB: $2M_{\odot} < Mdonor < 10M_{\odot}$

IMXB: M_{donor}>I0M⊙

Combini

From the mass for

Using the population

The resu different
LMXB: Mdonor

Combini

From the mass for

Using the population

The resu
different
LMXB: M_{donor}

Exploring the Parameter Space

- For the first time we are taking into account simultaneously multiple observational constraints
- Tentative parameter study: 25 PS models varying: CE efficiency, Stellar winds, SN kicks IMF, initial mass ratio and orbital period distribution
- Dominant effects:
 CE efficiency for LMXB and Stellar winds for HMXBs

Exploring the Parameter Space

For the first time we are taking into account simultaneously multiple observational constraints

Exploring the Parameter Space

For the first time we are taking into account simultaneously multiple observational constraints

Observational Constraints I: *Total X-ray luminosity*

Other work

Observational Constraints II: Wind-fed HMXBs

Observational Constraints II: Wind-fed HMXBs

Observational Constraints III: LMXBs

Lehmer et al. (2010)

$$\alpha = (9.05 \pm 0.37) \times 10^{28} \text{ ergs s}^{-1} M_{\odot}^{-1}$$

$$\beta = (1.62 \pm 0.22) \times 10^{39} \text{ ergs s}^{-1} (M_{\odot} \text{ yr}^{-1})^{-1}$$

Boroson, Kim & Fabbiano (2010, in prep.) selection of ellipticals with total Lx, M*, Age, [Fe/H] measurements

Summary

We are building the largest PS model library in order to study the evolution of XRBs at high redshifts, using cosmological simulations as input in our modeling.

- \square We predict an inversion in the evolution of galaxy XLFs at a redshift of ~2
- The contribution of wind-fed HMXBs ($L_{X,HMXBs}$ /SFR) is increasing with z, as a result of metallicity evolution.
- Average delay between star formation and peak Lx from LMXBs is ~1.2Gyr

Constraining the LMXB population seems problematic. Are old elliptical galaxies really old?

Work in Progress...

- Completion of PS model library
- Comparison in a galaxy by galaxy basis
- Modeling the spectral states of XRBs to refine bolometric corrections
- Modeling of selection effects in galaxy surveys
- Use as a constraint the XLFs of the most well observed nearby ellipticals, after revisiting their observational age estimates.
- Do LMXBs or HMXBs dominate our universe today?
- What is their relative contribution as a function of redshift?
- What is the contribution of XRBs to the reionization at high redshifts?

Modeling the X-ray Luminosity from a Single Stellar Population

