

VANDERBILT UNIVERSITY

Interpretation of the 115-day Periodic Modulation in the X-ray Flux of NGC 5408 X-1

Deatrick Foster^{1,2,4}, Phil Charles^{2,3}, and Kelly Holley–Bockelmann¹ ¹Vanderbilt University, Department of Physics & Astronomy, ²South African Astronomical Observatory ³University of Southampton, School of Physics & Astronomy, ⁴University of Cape Town

We comment on the recent observation of a 115-day modulation in the X-ray flux of the ultraluminous X-ray source (ULX) NGC 5408 X-1, and in particular, the interpretation of this modulation as the orbital period. We suggest that this modulation may instead be due to a precessing jet, and is thus superorbital in nature. Comparing the properties of this ULX with those of the prototype micro-quasar SS 433, we argue that NGC 5408 X-1 is very similar to SS 433: a hyper-accreting stellar-mass black hole in a shorter-period binary. If the analogy holds, the 115-day modulation is best explained by the still poorly-understood physics of innerdisc/jet precession.

Multicolor Disk (MCD) Blackbody Model

Introduction

- •Extragalactic X-ray sources with $L_X > 10^{39}$ ergs/sec ► Not consistent with nuclear emission (e.g. AGN) ▶Not a foreground or background source (e.g. Quasar) ▸Too bright to be simply explained by accreting stellarmass black holes or neutron stars •Well fitted with multicolor disk (MCD) blackbody mod-
- els, suggesting the presence of intermediate-mass black holes (IMBHs) of mass ~ 10^{2-4} M $_{\odot}$
- •What causes ULXs to appear so bright? Some possibilities are:
 - beamed emission along the line of sight from stellarmass black holes
 - Super-Eddington mass transfer onto stellar-mass black holes

▶sub-Eddington accretion onto IMBHs

IMBH candidates

Miller et al. 2004

The ULXs occupy a distinct region of the luminositytemperature diagram & are well fitted with MCD models

▶The fact that the ULXs are much brighter than the stellarmass black holes and yet have cooler disks suggests they might contain IMBHs

L_{Edd} ≈ 1.3*10³⁸(M/M_☉) erg/sec

0.12

For a 10 M_☉ BH $L_{Edd} \approx 1.3^{*}10^{39} \text{ erg/sec}$

0.10

nd 2.4-GHz data. The Chandra position of the ULX is marked with an error ircle of radius 0.6 arcsec. Bottom panel: radio image obtained by combining he 4.8- and 6.2-GHz maps.

Figure 4. Ratio of the high- and low-frequency maps, showing that the ULX nterpart has a steep spectral index ($\alpha_R \approx -1$). The scale and orientation nage is the same as in Fig. 3; the ULX position is marked with a

Table 1: Comparing QPO frequency and M_X in XRBs.			
Source	$\mathbf{P}_{sup} \left[\mathbf{d} \right]$	f_{QPO} [Hz]	$M_X [M_{\odot}]$
NGC 5408 X-1	115.5 ± 4^{a}	0.010^{a}	
SS 433	162.375 ± 0.011^{b}	0.100^{c}	4.3 ± 0.6^{d}
GRS 1915+105	590 ± 40^{e}	$0.001 – 67^{f}$	14 ± 4^g
GRO J1655-40	$\simeq 3^i$	$0.1 – 450^{j,k,m}$	6.3 ± 0.5^{n}
Cygnus X-1	$\simeq 300^p$	$0.040 - 0.070^q$	21 ± 8^p

Soria et al. 2006: steep-spectrum radio lobes, similar to SS 433

▶ Lang et al. 2007: optically thin emission from extended from surrounding nebula

Kaaret & Corbel: High excitation lines of He II λ 4686 and [Ne V] λ 3426 in its photo-ionised nebula

▶cf. SS 433: (P_{orb} = 13.1 d, P_{nu} = 6.3 d, $P_{sup} = 162.375 \text{ d}$)

Strohmayer 2009: NGC 5408 X-1 flux modulation only determined to ± 4 days due to low number of cycles sampled

▶ The nature of NGC 5408 X-1:

L_X ~ few x 10⁴⁰ erg/sec & low-frequency QPO present → Like SS 433, engulfed in a large photo-ionised nebula ▶115 day modulation in its X-ray flux ▶Is it an IMBH (e.g. Strohmayer 2009) or a HMXB with stellar-mass BH similar to SS 433?

^aStrohmayer (2009). ^bEikenberry et al. (2001). ^cKotani et al. (2006). ^dKubota et al. (2010). ^eRau, Greiner, & McCollough (2003). ^fMorgan, Remillard, & Greiner (1997). ^gGreiner et al. (2001). ⁱHjellming & Rupen (1995). ^jRemillard et al. (1999). ^kStrohmayer (2001). ^mRemillard et al. (2002). ⁿGreene et al. (2001). ^pRico (2008). ^qVikhlinin et al. (1994).

▶SS 433, a classic ADC source Intrinsic L_X of SS 433 is 10²⁻³ x higher; faint due to obscuration and/or mechanical beaming (Fabrika 2004; Begelman 2006) lower inclination, SS 433 Middleton et al. 2010 would be inerpreted as ULX / IMBH

References

▶ Begelman et al., 2006, MNRAS, 370, 399 ▶ Fabbiano, 1989, ARA&A, 27, 87 ▶Fabrika, 2004, ASPRv, 12, 1 Foster et al., 2010, accepted to ApJ, [astro-ph/1010.5247] ▶ Frank et al., 1987, A&A, 178, 137 ▶ Kaaret & Corbel, 2009, ApJ, 697, 950 ▶ Lang et al., 2007, ApJ, 666, 79 Margon, 1984, ARA&A, 22, 507 ► Middleton et al., 2010, MNRAS, in press Miller & Colbert, 2004, Int. J. Mod. Phys. D, 13, 1 ▶ Poutanen et al., 2007, MNRAS, 377, 1187 ▶ Soria et al., 2006, MNRAS, 368, 1527 Strohmayer, 2009, ApJ, 706, L210 Strohmayer & Mushotzky, 2009, ApJ, 703, 1386 •Zampieri & Roberts, 2009, MNRAS, 400, 677

modulation is indeed superorbital in nature.

Currently, the observations cannot distinguish between an orbital or superorbital origin of the 115-day modulation; a next-generation X-ray telescope with larger collecting area than available on Chandra or XMM-Newton would help resolve its true nature.

