# Constraint on AGN corona size with fully relativistic modeling of 3D corona

# Wenda Zhang<sup>†</sup>, Michal Dovčiak, Michal Bursa

<sup>1</sup>Astronomical Institute, Czech Academy of Sciences <sup>†</sup>Speaker



The 9th Fero meeting, 23-25 May, 2018. Heraklion, Crete, Greece

## Compact corona required to fit broad iron line in NLS1





Disc-corona in AGN; Bambi 2018



- broad iron line due to disc illuminated by hard X-ray from corona
- broadened red wing due to gravitational redshift
- iron line radial emissivity law:  $\epsilon(r) \propto r^{-q}$ ; "standard" value q = 3
- In NLS1s: steep emissivity: compact corona close to the BH
- 1H 0707-495:  $q \sim 7.8$  up to 5 GM/c<sup>2</sup> requires a point-like corona with height  $\leq 1.5$  GM/c<sup>2</sup> (Fabian+2012)

#### The lamp-post scenario

- the corona is approximated by an infinitesimal point on the black hole rotation axis
- greatly simplifying calculations



Figure: Dovčiak 2004

However: corona has to intercept enough soft seed photons

#### Although extended corona may also produce steep emissivity



Figure: Wilkins & Fabian 2012

Corona that extends radially to 30  $GM/c^2$  and between 2 and 10  $GM/c^2$  above the BH could produce steep emissivity  $\leq$  3  $GM/c^3$ 

## Estimate of corona size with 1D model



- seed photon spectrum received by lamp-post corona close to blackbody: use NTHCOMP to obtain shape of X-ray spectrum
- Comptonization conserves number of photons: normalization of X-ray spectrum  $\rightarrow f_X$
- X-ray luminosity L<sub>X</sub> from observed X-ray luminosity
- area of corona is simply  $L_X/F_X$ .
- details see Dovčiak & Done 2016

#### Estimate of corona size with 1D model: 1H 0707-594

• maximum X-ray luminosity:  $\sim 3 \times 10^{44}~{\rm erg~s^{-1}}$ :  $\sim 0.27 L_{Edd}$  for  $10^7~M_{\odot}$  BH



Figure: Dovčiak & Done 2016

For 0.27  $L_{Edd}$ : corona size  $\gtrsim 18 \text{ GM/c}^2$ 

## 3D Full Relativistic monte carlo modeling

#### **Parameters**

- disc: a, M, M, f<sub>col</sub>
- corona:  $T_e$ ,  $\bar{\lambda}$ , geometry
  - sphere: h, r
  - slab: h, thickness, radius
  - other geometries..

# Assumptions

- Thin disc:
  - Novikov-Thorne temperature profile
  - local spectrum: color corrected blackbody
- semi-infinite scattering atmosphere (Chandrasekhar 1960)
  - angular distribution of disc photon:
  - polarization degree: monotonically increase with polar angle, un-polarized at face-on,  $\delta = 11.7\%$  edge-on
  - polarization angle: perpendicular to meridian plane
- thermal electron: velocity follows Maxwell-Jüttner distribution

# 3D Full Relativistic monte carlo modeling

## Procedures

- sample disc photons:  $x^{\mu}$ ,  $k^{\mu}$ ,  $E_{\infty}$ ,  $\delta$ ,  $K_{WP}$
- Propagate x<sup>μ</sup>, k<sup>μ</sup> along null geodesic in Kerr spacetime; step size « λ
- if photon enters corona:
  - covariant evaluation of optical depth au, then scattering probability

$$P=1-e^{-\tau};$$

- if scattering:
  - sample electron four-momentum
  - scattering kernel follows Pozdnyakov+1983; Klein-Nishina cross section
  - update  $E_{\infty}$ ,  $k^{\mu}$ ,  $\delta$ ,  $f^{\mu}$ , then  $K_{\rm WP}$

at infinity:

- *E*∞
- $\mathbf{x}^{\mu} \rightarrow \mathbf{i}_{obs}$
- $k^{\mu}, \delta, K_{WP} \rightarrow Q, U$



## **Comparison with GRMONTY**

- GRMONTY: GR radiative transfer code (Dolence+2009); scattering kernel follows Pozdnyakov+1983
- For comparison:
  - central photon source;  $T_{bb} = 10^{-8} m_e c^2$
  - spherical cloud;  $\tau_{\rm T} = n_e \sigma_T R$ ;  $T_e = 4 m_e c^2$
  - no polarization; non-GR



Our result is consistent with GRMONTY

#### Varying optical depth

a = 0.998,  $M = 10^7 M_{\odot}$ ,  $\dot{M} = \dot{M}_{Edd}$ ,  $T_e = 100 \text{ keV}$ ,  $i = 30^{\circ}$ ,  $f_{col} = 2.4$ Spherical corona:  $h = 10 \text{ GM/c}^2$ ,  $r = 4 \text{ GM/c}^2$ 



• Spectral cut-off around hundreds of keV

#### Varying optical depth

a = 0.998,  $M = 10^7 M_{\odot}$ ,  $\dot{M} = \dot{M}_{Edd}$ ,  $T_e = 100 \text{ keV}$ ,  $i = 30^{\circ}$ ,  $f_{col} = 2.4$ Spherical corona:  $h = 10 \text{ GM/c}^2$ ,  $r = 4 \text{ GM/c}^2$ 



- Spectral cut-off around hundreds of keV
- $\tau$  increases: more luminous & harder X-ray emission

#### Varying optical depth

a = 0.998,  $M = 10^7 M_{\odot}$ ,  $\dot{M} = \dot{M}_{Edd}$ ,  $T_e = 100 \text{ keV}$ ,  $i = 30^{\circ}$ ,  $f_{col} = 2.4$ Spherical corona:  $h = 10 \text{ GM/c}^2$ ,  $r = 4 \text{ GM/c}^2$ 



- Spectral cut-off around hundreds of keV
- $\tau$  increases: more luminous & harder X-ray emission

#### Varying size

a = 0.998,  $M = 10^7 M_{\odot}$ ,  $\dot{M} = \dot{M}_{Edd}$ ,  $T_e = 100 \text{ keV}$ ,  $i = 30^{\circ}$ ,  $f_{col} = 2.4$ Spherical corona:  $h = 5 \text{ GM}/c^2$ ,  $\tau = 0.2$ 



#### Varying size

a = 0.998,  $M = 10^7 M_{\odot}$ ,  $\dot{M} = \dot{M}_{Edd}$ ,  $T_e = 100 \text{ keV}$ ,  $i = 30^{\circ}$ ,  $f_{col} = 2.4$ Spherical corona:  $h = 5 \text{ GM}/c^2$ ,  $\tau = 0.2$ 



Larger corona  $\rightarrow$  more luminous X-ray

## Comparison with observations (in progress)

CHEESES sample (Ursini, Ph.D. Thesis) (subsample of CAIXA catalogue (Bianchi 2009))

- un-obscured, radio-quiet AGNs
- more than one exposure with XMM/pn
- observations have at least one XMM/OM filters out of six

## **Putting constraint**

- select CHEESES AGNs with:
  - $\dot{M} \leq \dot{M}_{Edd}$ : Novikov-Thorne disc assumption
  - simultaneous XMM UV/X-ray observations
- assume spin a
- $L_{\rm UV}, a, M \rightarrow \dot{M}$
- find out corona geometry to produce observed X-ray luminosity and spectrum

#### Future work

## polarization

- currently we include polarization calculation
  - rotation of polarization vector in Kerr space-time
  - dependence of differential cross-section on polarization degree
- long computation time required to obtain good SNR of polarization degree and angle;

#### corona motion

 investigate the effect of corona rotation or motion along vertical direction (jet base)

#### energy balance

- disc heated by corona  $\rightarrow$  more seed photons  $\rightarrow$  more luminous X-ray .....
- could be accounted for by a few iterations

#### Summary

- Lamp-post scenario usually used in modeling corona; however, corona should have finite size; luminous X-ray requires large enough corona to intercept enough seed photons
- simple 1D estimate for 1H 0707-594 high state put a constraint of corona size  $\gtrsim 18~GM/c^2$
- we carry out fully relativistic monte carlo modeling of AGN disc-corona emission
- constraint on corona size with simultaneous X-ray/UV observation (in progress)