Testing theories of gravity with X-ray reflection spectroscopy

Sourabh Nampalliwar

Eberhard Karls Universität, Tübingen

May 24, 2018

Sourabh Nampalliwar Testing theories of gravity with X-ray reflection spectroscopy

• Why test general relativity?

イロト イヨト イヨト

- Why test general relativity?
- Alternatives to general relativity.

イロト イヨト イヨト

- Why test general relativity?
- Alternatives to general relativity.
- Black holes as the best tests.

イロト イヨト イヨト

- Why test general relativity?
- Alternatives to general relativity.
- Black holes as the best tests.
- Alternative black holes.

・ 同 ト ・ ヨ ト ・ ヨ ト

- Why test general relativity?
- Alternatives to general relativity.
- Black holes as the best tests.
- Alternative black holes.
- What about gravitational waves?

A (B) > A (B) > A (B) >

• Within GR, described by the Kerr metric.

イロト イヨト イヨト

- Within GR, described by the Kerr metric.
- Parameters in the Kerr metric: M, a, |a| < M.

イロト イボト イヨト イヨト

- Within GR, described by the Kerr metric.
- Parameters in the Kerr metric: M, a, |a| < M.
- Parametrically deformed in alternative theories.

A D > A B > A B > A B >

- Within GR, described by the Kerr metric.
- Parameters in the Kerr metric: M, a, |a| < M.
- Parametrically deformed in alternative theories.
- Top-down and bottom-up approaches.

イロト イボト イヨト イヨト

Accreting black holes

Sourabh Nampalliwar

 $\begin{array}{c} < \square \mathrel{\blacktriangleright} \lor < \square \mathrel{\blacktriangleright} \lor < \square \mathrel{\blacktriangleright} \lor < \square \mathrel{\blacktriangleright} \lor = \square \mathrel{\leftarrow} \bigcirc \bigcirc \end{array}$ Testing theories of gravity with X-ray reflection spectroscopy

Radiation profile

Testing theories of gravity with X-ray reflection spectroscopy

Broadening of a line

via FaƁiah et 词., PASP, 112, 打5 (20頭) のへの

Sourabh Nampalliwar Testing theories of gravity with X-ray reflection spectroscopy

• Kerr metric:

$$ds^{2} = -\left(1 - \frac{2Mr}{\Sigma}\right)dt^{2} + \frac{\Sigma}{\Delta}dr^{2} - \frac{2Mar\sin^{2}\theta}{\Sigma}dt\,d\phi$$
$$+ \Sigma d\theta^{2} + \left(r^{2} + a^{2} + \frac{2Ma^{2}r\sin^{2}\theta}{\Sigma}\sin^{2}\theta\right)d\phi^{2} \quad (1)$$
$$\Delta \equiv r^{2} - 2Mr + a^{2}, \quad \Sigma \equiv r^{2} + a^{2}\cos^{2}\theta \quad (2)$$

Sourabh Nampalliwar Testing theories of gravity with X-ray reflection spectroscopy

<ロ> (日) (日) (日) (日) (日)

Iron lines within GR

Sourabh Nampalliwar

< ロ > < 回 > < 回 > < 回 > < 回 > Testing theories of gravity with X-ray reflection spectroscopy

æ

$$\mathcal{L} = \frac{1}{2}R - \frac{1}{4}\partial_{\mu}\partial^{\mu}\phi + \frac{\alpha'}{8g^2}e^{\phi}\left(R_{\mu\nu\rho\sigma}R^{\mu\nu\rho\sigma} - 4R_{\mu\nu}R^{\mu\nu} + R^2\right)$$

Sourabh Nampalliwar Testing theories of gravity with X-ray reflection spectroscopy

< ロ > < 回 > < 回 > < 回 > < 回 >

Black holes beyond GR: bottom-up

• Johannsen metric¹:

$$ds^{2} = -\frac{\tilde{\Sigma}[\Delta - a^{2}A_{2}^{2}\sin^{2}\theta]}{\Xi}dt^{2} + \frac{\tilde{\Sigma}}{\Delta A_{5}}dr^{2}$$
$$-\frac{a[(r^{2} + a^{2})A_{1}A_{2} - \Delta]}{\Xi}dt\,d\phi + \tilde{\Sigma}d\theta^{2}$$
$$+\frac{\tilde{\Sigma}\sin^{2}\theta[(r^{2} + a^{2})^{2}A_{1}^{2} - a^{2}\Delta\sin^{2}\theta]}{\Xi}d\phi^{2} \qquad (3)$$

$$\Xi = ((r^2 + a^2)A_1 - a^2A_2\sin^2\theta)^2,$$

$$A_1 = 1 + \alpha_{13}(M/r)^3 + \dots, \quad A_2 = 1 + \alpha_{22}(M/r)^2 + \dots$$

$$A_5 = 1 + \alpha_{52}(M/r)^2 + \dots, \quad \tilde{\Sigma} = \Sigma + \epsilon_3(M^3/r) + \dots$$

1 Johannsen, PRD, 88, 044002 (2013)

Testing theories of gravity with X-ray reflection spectroscopy

Iron lines beyond GR

Sourabh Nampalliwar Testing theories of gravity with X-ray reflection spectroscopy

< □ > < 同

< E

э

Model	relxi	11_nk<1> Sou	urce No.: 1	Active	/0n	
Model	Model	Component	Parameter	Unit	Value	
par	comp					
1	1	relxill_nk	Index1		3.00000	frozen
2	1	relxill_nk	Index2		3.00000	frozen
3	1	relxill_nk	Rbr		15.0000	frozen
4	1	relxill_nk	а		0.998000	+/- 0.0
5	1	relxill_nk	Incl	deg	30.0000	+/- 0.0
6	1	relxill_nk	Rin		-1.00000	frozen
7	1	relxill_nk	Rout		400.000	frozen
8	1	relxill_nk	z		0.0	frozen
9	1	relxill_nk	gamma		2.00000	+/- 0.0
10	1	relxill_nk	logxi		3.10000	+/- 0.0
11	1	relxill_nk	Afe		5.00000	+/- 0.0
12	1	relxill_nk	Ecut	keV	300.000	frozen
13	1	relxill_nk	refl_frac		3.00000	+/- 0.0
14	1	relxill_nk	defpar_type	e	1.00000	frozen
15	1	relxill_nk	defpar_valu	ue	0.0	+/- 0.0
16	1	relxill_nk	norm		1.00000	+/- 0.0

Constraints with current instruments

arXiv:1804.10380, under review

Testing theories of gravity with X-ray reflection spectroscopy

Scope with future instruments

Sourabh Nampalliwar

 $\langle \Box \rangle \land \langle \overline{\Box} \rangle \land \langle \overline{\Xi} \rangle \land \langle \overline{\Xi} \rangle \land \overline{\Xi} \land \bigcirc \Im$ Testing theories of gravity with X-ray reflection spectroscopy

A glimpse into the future

Sourabh Nampalliwar Testing theories of gravity with X-ray reflection spectroscopy

< ロ > < 回 > < 回 > < 回 >

э

A glimpse into the future

< □ > < 同

* ≣

A glimpse into the future

Testing theories of gravity with X-ray reflection spectroscopy

arXiv:1804.10380, under review

The curious case of Einstein dilaton Gauss Bonnet

Sourabh Nampalliwar

Testing theories of gravity with X-ray reflection spectroscopy

arXiv:1803.10819, to appear in PLB

• Better model: lamp post geometry, thick disk, atomic data, magnetic field.

イロト イボト イヨト イヨト

- Better model: lamp post geometry, thick disk, atomic data, magnetic field.
- Better data (analysis): new telescopes, right combo of models, non-simultaneous simulations.

イロト 不得 トイヨト イヨト

- Better model: lamp post geometry, thick disk, atomic data, magnetic field.
- Better data (analysis): new telescopes, right combo of models, non-simultaneous simulations.
- Better metrics: more top down metrics, nicer bottom up metrics.

イロト イボト イヨト イヨト

- Better model: lamp post geometry, thick disk, atomic data, magnetic field.
- Better data (analysis): new telescopes, right combo of models, non-simultaneous simulations.
- Better metrics: more top down metrics, nicer bottom up metrics.

Thank you!

イロト イボト イヨト イヨト

ISCO contours

Sourabh Nampalliwar

Testing theories of gravity with X-ray reflection spectroscopy