

Results from the use of the X-ray reverberation model KYNREFREV in XSPEC in the lamp-post

M. D. Caballero-Garcia, M. Dovčiak (ASU-CAS, Prague), I. E. Papadakis (D. of Physics, Heraklion), V. Karas (ASU-CAS, Prague), on behalf of a larger collaboration.

Reverberation in X-rays

Overview

- X-ray reverberation mapping of the inner parts of the accretion disc → clues to the geometry of the corona.
- Reverberation mapping in the lamp-post geometry of the compact corona → ionisation profile of the disc (Chainakun+16; Dovčiak+18, in prep.).
- Light rays: Fully relativistic ray-tracing code in vacuum for photon paths from the corona to the disc and to the observer & from the disc to the observer.
- Goal: understanding the lags versus frequency/energy → model parameters: height of the corona, inclination of the observer, disc ionization profile and black hole spin.

The sketch of the lamp-post geometry. (Credits: Dovčiak+14)

X-ray Soft/negative=reverberation lags

The model: "The relativistic reflection model in the <u>lamp-post</u> geometry (KYNREFREV)"

Description of the model KYNREFREV

- Black hole: Spinning BH, with mass M and dimensionless spin parameter a = 0 -1
- <u>Accretion disc</u>: co-rotating, Keplerian, geometrically thin, optically thick, *ionised* disc extending from r_{in} up to r_{out} (GM/c²).
- <u>Corona</u>: hot point-like plasma on the rotation axis at height *h* and emitting power-law radiation, $F_{p} \sim E^{-\Gamma}e^{-E/Ec}$.
- > <u>Observer</u>: with an inclination angle Θ_{n} with respect to the symmetry axis of the disc.
- Light rays: Fully relativistic ray-tracing code in vacuum for photon paths from the corona to the disc and to the observer & from the disc to the observer.
- <u>Reflection</u>: REFLIONX (Ross & Fabian, 2005), tables for constant density slab illuminated by the power-law incident radiation used to compute the re-processing in the ionised accretion disc.
- The <u>ionisation of the disc</u>, $\xi \rightarrow$ amount of the incident primary flux (dependent on the luminosity of the primary source, height of the corona and mass of the black hole) \rightarrow density of the accretion disc (different <u>density radial profiles</u> are used).
- Several limb brightening/darkening prescriptions for directionality of the re-processed emission.

The model: "The relativistic reflection model in the <u>lamp-post</u> geometry (KYNREFREV)"

Artistic representation of the effects of Strong Gravity around an accreting black-hole

Fits with XSPEC using KYNREFREV: Observational data

- We have produced time-lags from a sample of 3 AGN (with a mass of ~10⁶ M_a): ARK 564, MCG 6-30-15, 1H0707-495
- Applying statistical procedures (Epitropakis & Papadakis+16) the whole (XMM-Newton) light curve was divided in 20 ks segments in different energy bands.
- We used also the *phenomenological* prescription of Epitropakis & Papadakis+17 for the continuum (hard) time-lags.
- We fitted the (0.3-1/1-10 keV) time-lags versus frequency global spectra with the KYNREFREV model.
- ► We obtain very good fits in gral. $(\chi^2_{\ u} \sim 1)$ with a run-time of the order of seconds (i.e. alike normal X-ray energy-spectral fitting) \rightarrow For use in XSPEC (and very efficient) method !

Fitting the data (using XSPEC): ARK 564

The soft lag-frequency fitted global spectrum of ARK 564 (0.3-1 vs. 1-10 keV) as obtained using XSPEC.

Fitting the data (using XSPEC): MCG 6-30-15

The soft lag-frequency fitted global spectrum of MCG 6-30-15 (0.3-1 vs. 1-10 keV) as obtained using XSPEC.

Fitting the data (using XSPEC): 1H0707-495

The soft lag-frequency fitted global spectrum of 1H 0707-495 (0.3-1 vs. 1-10 keV) as obtained using XSPEC.

First main goal:

Can we constrain the spin of the BH from the X-ray reverberation time-lags (taking into account all the effects of GR) ?

Fits with XSPEC: Results

a (GM/c)	0.99 ^(f)	(0.0 ^(f))
	ARK 564	
	$(M_8 = 0.023^{(f,a)}, \Gamma = 2.5^{(f)})$	
θ_0 (deg.)	≼14	≤60
$h(r_g)$	2.8+0.4	$2.2^{+0.4}_{-0.1}$
Density $(10^{15} \text{ cm}^{-3})$	0.20+0.23	12^{+7}_{-10}
A	$(8.4\pm1.2)\times10^{-5}$ (t)	-10
8	$1.60 \pm 0.03^{(t)}$	
χ^2/ν	1.42 (70/49)	1.40(69/49)
p-value	0.027	0.03
	MCG 6-30-15	
	$(\mathrm{M}_8=0.016^{(f,b)},\Gamma=2.0^{(f)})$	
θ_0 (deg.)	≼30	≤60
$h(\mathbf{r}_{g})$	3.8±0.5	3.4±0.8
Density (10 ¹⁵ cm ⁻³)	170±150	11^{+11}_{-9}
A	$(2.7\pm0.4)\times10^{-3}$ (t)	-
S	1.25 ± 0.03	-
χ^2/ν	1.37 (49/36)	1.34 (48/36)
p-value	0.07	0.08
	1H 0707-495	
	$(\mathrm{M}_8 = 0.023^{(f,c)}, \Gamma = 2.5^{(f)})$	
θ_0 (deg.)	22^{+4}_{-5}	21^{+9}_{-11}
$h(r_g)$	3.6±0.3	3.1±0.3
Density $(10^{15} \text{ cm}^{-3})$	190_{-40}^{+50}	$3.8^{+2.1}_{-1.3}$
Α	$(4.1\pm0.4)\times10^{-4}$	6 6
S	$1.50 \pm 0.03^{(t)}$	_
χ^2/ν	1.42 (84/59)	1.53 (90/ 59)
p-value	0.018	(0.005)

Parameters obtained from the fits: 1) a/M; 2) Theta_o; 3) Density and 4) Height

Phase wrapping (effect from GR)

Phase wrapping (effect from GR)

Extrapolated to higher frequencies fitted models for IRAS 13224-3809 with the obtained value for spin given the data (0. 74± 0. 02) and for a highly spinning BH obtained from sectroscopy (0. 95) at left and right, respectively. See <u>Caballero-Garcia et al. (2017)</u>

Warning:

The combination of low height (h<3rg)+high spin is a forbidden configuration (because phase-wrapping has not been observed)

Fits with XSPEC: Results (I)

- Previous studies: Emmanoulopoulos+14 (E14), Epitropakis+16 differences because the ionization of the disc is now included !
- > Inclination angle obtained (Θ_{λ}) is always *medium-low*.
- The values obtained for the height are low (*h~4r_g*), irrespective of the spin value considered. But higher than in E14 (because reflection increases with ionization !).
- > 1H 0707-495 has the lowest phase-wrapping frequency (due to the very high reflection), thus enabling us to <u>discard the low-height+highly spinning</u> <u>solution</u>.
- The <u>hypothesis of a non-spinning BH in 1H 0707-495 is not supported</u> by our fits. This is in agreement with previous spin estimates provided from spectroscopy (e.g. Brenneman+13,14; see discussion in Caballero-Garcia+18, MNRAS).

Second main goal:

Can we constrain the geometry of the corona from the X-ray reverberation time-lags (*taking into account all the effects of GR*) ?

Fits with XSPEC: Results (II)

Model for extended coronae: Chainakun & Young (2017)

Model for extended coronae: Chainakun & Young (2017)

Sketch of the "two-blobs" model where two X-ray sources are located on the rotation axis of the black hole. We define $x_i(t)$ as the time dependent amplitude of the X-ray sources where the subscripts i=1 and 2 refer to the lower and upper sources, respectively. The source heights are h_1 and h_2 (from Chainakun & Young, 2017).

Conclusions

- First lamp-post reverberation model taking into account all known physical aspects is <u>ready for use into XSPEC</u> (Dovčiak+18, in prep.; Caballero-Garcia+18, MNRAS).
- KYNREFREV is very well suited for obtaining the height h of the lamppost corona.
- We are working further to solve phase wrapping effects in order to get realistic values for the spin parameter.
- The code includes thermal reverberation from the accretion disc and new XILVER tables (Garcia+16; not used in this presentation).
- The lamp-post is the first approximation !!! More work is needed in the future in order to address possible (other) extended coronae geometries.

Acknowledgements

Financial support by:

1st) The European "Seventh Frame-work Programme (FP7/2007-2013) under grant agreement # 312789".
Period of the project's realization 1.1.2013 – 31.12.2017 2nd) GA CR grant 18-00533S.

Period of the project's realization 1.1.2017 – 31.12.2020

