# **Supermassive Black Holes** Masses and Accretion Rates



## Luis C. Ho (何子山)

Kavli Institute for Astronomy and Astrophysics Peking University







Mass of central bulge





Mass of central bulge

## Correlation Between Black Hole Mass and Bulge Mass in Active Galaxies



Mass of central bulge

## **Correlation Between Black Hole Accretion Rate and Host Galaxy Star Formation Rate**



**Host Galaxy Star Formation Rate** 









Nuker Team



**M 87:**  $M_{\odot} = 6.2 \times 10^9 M_{\odot}$  (Gebhardt et al. 2011)









## High-Accuracy, High-Precision BH Masses with ALMA









#### MEASUREMENT OF THE BLACK HOLE MASS IN NGC 1332 FROM ALMA OBSERVATIONS AT 0.044 ARCSECOND RESOLUTION

AARON J. BARTH<sup>1</sup>, BENJAMIN D. BOIZELLE<sup>1</sup>, JEREMY DARLING<sup>2</sup>, ANDREW J. BAKER<sup>3</sup>, DAVID A. BUOTE<sup>1</sup>, LUIS C. HO<sup>4</sup>, JONELLE L. WALSH<sup>5</sup>





## **Black Hole - Host Galaxy Scaling Relations**



Kormendy & Ho (2013, ARA&A)



$$M_{\bullet} - M_{\text{bulge}}$$
 Relation

$$\frac{M_{\bullet}}{10^9 \ M_{\odot}} = \left(0.49^{+0.06}_{-0.05}\right) \left(\frac{M_{\text{bulge}}}{10^{11} \ M_{\odot}}\right)^{1.16\pm0.08}; \text{ intrinsic scatter} = 0.29 \text{ dex.}$$

## $M_{\bullet} - \sigma$ Relation

$$\frac{M_{\bullet}}{10^9 \ M_{\odot}} = \left(0.309^{+0.037}_{-0.033}\right) \left(\frac{\sigma}{200 \ \mathrm{km \ s}^{-1}}\right)^{4.38 \pm 0.29} \text{ intrinsic scatter} = 0.28$$

## **Black Hole Masses in Active Galaxies**





 $M_{\rm virial} = f R V^2 / G$ 

- *f* geometric fudge factor
- **R** BLR radius
- **V** BLR velocity dispersion



 $M_{\rm virial} = f R V^2 / G$ 

- *f* geometric fudge factor
- **R** BLR radius
- **V** BLR velocity dispersion



 $M_{\rm virial} = f R V^2 / G$ 

- f geometric fudge factor
- **R** BLR radius
- **V** BLR velocity dispersion



 $\tau = (1 + \cos \theta) R/c$ 



 $M_{\rm virial} = f R V^2 / G$ 

- *f* geometric fudge factor
- **R** BLR radius
- **V** BLR velocity dispersion



 $M_{\rm virial} = f R V^2 / G$ 

- *f* geometric fudge factor
- **R** BLR radius
- **V** BLR velocity dispersion



 $M_{\rm virial} = f R V^2 / G$ 

geometric fudge factor

**R** BLR radius

**V** BLR velocity dispersion

*M*• can be estimated to an accuracy of ~0.3 - 0.5 dex for  $z \approx 0 - 7$ 





Mortlock et al. (2011)





Banados et al. (2017)

## Calibration of *f*-factor




#### **Calibration of Single-Epoch Virial Masses**

 $\log M_{\rm BH}({\rm H}\beta) = \log \left[ \left( \frac{{\rm FWHM}({\rm H}\beta)}{1000 \,{\rm km}\,{\rm s}^{-1}} \right)^2 \left( \frac{\lambda L_{\lambda}(5100 \,{\rm \AA})}{10^{44} \,{\rm erg}\,{\rm s}^{-1}} \right)^{0.533} \right] + a$   $\frac{Dseudo \ bulges}{a = 6.62 \pm 0.04} \quad \varepsilon_0 = 0.38$ 





*Kim, Ho, et al.* (2017)



Greene & Ho (2004, 2007a,b); Dong, Ho et al. (2012)

#### HST/ACS

Greene, Ho & Barth (2008); Jiang, Greene & Ho (2011a, b)



### **A Revised BLR Size-Luminosity Relation**



### Can we ever do better than factor of 2-3?



Li et al. (2018)

### Can we ever do better than factor of 2-3?

*Li et al.* (2018)



*Grier et al.* (2013)







*Xiao et al.* (2018)





*Zhao, Ho et al.* (2018)

SDSS J120048.00+314800.0 SDSS J084224.00+362512.0 z=0.116 z=0.562 SDSS J122224.00-000743.7 SDSS J164136.00+385848.0 z=0.173 z=0.596  $(cm^2/Å)$ SDSS J142200.00+250936.0 SDSS J134560.00+414912.0 erg/s/ z=0.233 z=0.614  $f_{\lambda}(10^{-17}$ 40 SDSS J111000.00+423260.0 SDSS J005009.60-003900.7 z=0.261 z=0.728 SDSS J142248.00+383712.0 SDSS J162159.99+352060.0 z=0.266 z=0.759 observed wavelength (Å) observed wavelength (Å)

Kong & Ho (2018)





Kong & Ho (2018)



Kong & Ho (2018)







*Ricci et al.* (2017)

She, Ho & Feng (2018)













#### **Bolometric Corrections**

 $L_{bol} = \kappa_x L_x$ x = 5100 Ang 2–10 keV [O III] 5007 etc ...

κ<sub>x</sub> *is not a constant !* 




























Collinson et al. (2015)







Tweakingreddeninghost galaxy"wind"inclinationspin







log vf,









Sadowski & Narayan (2016)



Jiang, Stone & Davis (2017)



Jiang, Stone & Davis (2017)



KAVLI INSTITUTE FOR ASTRONOMY AND ASTROPHYSICS, PEKING UNIVERSITY 北京大学科维理天文与天体物理研究所