X-ray corona of X-ray binaries (and AGN)

Julien Malzac

Broad band spectra of BH binaries

Non-thermal emission: 'the corona'

from Done et al. 2007

Radiation processes in the corona

Soft seed photons ?

- ✓ blackbody emission from accretion disc
- ✓ synchrotron emission

Thermal Comptonization

- Comptonization of soft photon on a thermal plasma of electrons (Maxwellian energy distribution)
- Parametrized by temperature T and Thomson optical depth $\tau = n_e \sigma_T R$

$$F_E \propto E^{-\Gamma(kT, au)} \exp\left(-rac{E}{E_c(kT, au)}
ight)$$

 $E_c \simeq kT$
 $\Gamma(kT_{
m e}, au)$

Spectral degeneracy: different $T_{
m e}$ and au give same Γ

Geometry dependence

$$kT_{\rm e} = 100 \, {\rm keV}, \tau = 0.5$$

 $kT_{\rm e} = 100 \,\mathrm{keV}$

Geometric degeneracy

Radiative balance

- In soft photon field of bright compact sources electrons radiate away their energy on time scales <R/c. Need continuous reheating/ acceleration to keep them energized. (Merloni & Fabian .2000)
- Depending on underlying physical scenario, this heating could be shocks or MHD wave acceleration, magnetic reconnection, Coulomb interactions with a population of hot ions
- Electron temperature controlled by heating= radiative cooling, cooling rate $\propto L_s$

$$\bigcirc \quad \Gamma \propto \left(\frac{L_{heating}}{L_s}\right)^{-\delta}$$

(see Belodorov 1999; Malzac et al 2001)

Radiation feedback

Cold phase (accretion disc) illuminated by X-ray radiation-> reflection +absorption

- Absorbed radiation heats up the disc. Energy reprocessed and reemitted as low energy (nearly) thermal radiation.
- Depending on geometry a fraction of the reprocessed radiation may illuminate the corona and provide seed photons for comptonization

 \odot If reprocessing dominates over intrinsic disc emission $~L_s \propto L_{heating}$

So Then $\Gamma \propto \left(\frac{L_{heating}}{L_s}\right)^{-\sigma}$ depends mostly on coronal geometry

(Haardt & Maraschi 1993; Haardt Maraschi Ghisellini 1994)

(Stern et al. 1995, Poutanen Svensson & Stern 1996)

Dependence of spectral parameters on geometry

$$\stackrel{\texttt{A}}{\scriptstyle{\Delta}} \stackrel{\texttt{BHB}}{\scriptstyle{\text{AGN}}} \} \tau = 3$$

$$\begin{bmatrix} & \text{BHB} \\ & \text{Agn} \end{bmatrix} \tau = 0.5$$

Malzac, Beloborodov, Poutanen 2001

Application to BHBs in hard state

- Observed up to L<0.3 L_{Edd}
- Thermal emission from accretion disc barely detected (T_{in}~0.1 keV)
- Solution \mathbb{A} X-ray emission dominated by powerlaw $\Gamma = 1.4 - 1.9$
- High energy cut-off at ~100 keV
- Solution Fits with Thermal comptonisation models: $\tau \simeq 1 - 3, \, kT_e \simeq 50 - 200 \, {\rm keV}$
- Reflection amplitude is small R~0.3
- Associated with the presence of a compact radio jet

What if the accretion disc is ionised ?

All calculations of coupled corona+disc

assumed NEUTRAL reflection of the accretion disc

If disc IONISED \Rightarrow X-ray albedo increased \Rightarrow higher temperature \Rightarrow harder spectrum

Truncated disc model

HARD STATE

Cold disc truncated at ~ 100-1000 Rg + hot inner accretion flow

Corona=hot accretion flow (ADAF, CDAF, RIAF, JED,....

Esin et al. 1997, Poutanen et al. 1997, Yuan & Zdziarski 2004, Petrucci et al. 2010., Meyer-Hofmeister et al. 2018)

Variations of truncation radius also explain qualitatively:

- spectral evolution with luminosity in hard state in XRBs and AGN (Gamma vs luminosity)
- hardness intensity diagram evolution of XRBs (and AGN ?)
- rms-flux correlation, hard lags (propagation of fluctuations)
- reflection lags
- evolution of QPO frequencies (LT precession of hot flow)...

Soft state of Black Hole binaries

Observed in a narrow range of luminosities (~0.01 -0.1 L_{Edd})

X-ray spectrum dominated by soft thermal emission: perfect for tests of accretion disc models and measurements of parameter of the inner accretion disc

Emission from the accretion flow

Hybrid thermal/non-thermal comptonization models

Comptonising electrons have similar energy distribution in both states: Maxwellian+ non-thermal tail

HARD STATE: $kT \sim 50-100 \text{ keV}$, $T_{T} \sim 1-3$: Thermal comptonisation dominates

SOFT STATE: $kT \sim 10-50 \text{ keV}$, $T_{T} \sim 0.1-0.3$: Inverse Compton by non-thermal electrons dominates

Lower temperature of corona in soft state possibly due to radiative cooling by soft disc photons

EQPAIR

(Poutanen & Coppi 1998; Coppi 1999; Gierlinski et al. 1999, Zdziarski ..., Done ...)

Effect of magnetic field

Cooling: Optical synchrotron flux considerably increased by non-thermal particles Wardzinski & Zdziarski 2002

Thermalization of electrons: the synchrotron boiler effect (Ghisellini, Gilbert & Svensson 1988; Belmont, Malzac & Marcowith 2008; Vurm & Poutanen 2009)

Hybrid comptonization with magnetic field

Malzac & Belmont 2009; Poutanen & Vurm 2009

Droulans et al. 2010; Del Santo et al. 2013

- All spectral states consistent with pure non-thermal acceleration models,
- Hard state compatible with pure synchrotron Comptonization
- Spectral transitions: thermal disc photons cool down the corona in softer states
- Spectral fits with BELM: first constraints (upper limits) on coronal magnetic field B and ions temperature Tions in all spectral states
 - weak (i.e strongly sub-equipartition) magnetic field in hard state

Can hot accretion flows explain the bright hard state sources?

Brighest hard sources reach $0.3L_{\rm Ed}$ with, with $\Gamma < 1.7$ $kT_e \simeq 30$ keV, which implies $\tau_{\rm T} \ge 1$ \bigcirc In the context of alpha discs, (i.e. $Q_{\rm vis} = -\alpha P_{\rm gas} R \frac{d\Omega}{dr}$), there is no hot flow solutions with $\tau_T \ge 1$: cooling is too strong. standard hot flow solutions cannot be applied A possible fix: magnetically dominated accretion flow 1) Assume $P_{\text{mag}} \geq P_{\text{gas}}$ 2) Modified viscosity law: $Q_{\rm vis} = -\alpha (P_{\rm gas} + P_{\rm mag}) R \frac{d\Omega}{dr}$ ightarrow solutions with $au_{
m T} \geq 1$ $T_{
m i}/T_{
m e} \sim 2 - 10$ $P_{
m mag}/P_{
m gas} \sim 2$

(e.g. Oda et al 2010, Bu et al 2009, Fragile & Meier 2009)

Jet Emitting Disk

Ferreira et al. 2006 Petrucci et al. 2008

Jet Emitting Disk:

Ferreira 1997

- Accretion due to magnetic torque,
- $P_{jets} = b P_{acc}$,
- $v_r \ge c_s \longrightarrow$ Supersonic accretion flow

$$P_{jets} = b \; \frac{GM\dot{M}}{2r_{in}} \; \left(1 - \frac{r_{in}}{r_J}\right)$$

At low luminosity... $L = 10^{-3} L_{Edd}$

Marcel et al. 2018 A&A in press

Jet Emitting Disc solutions at L> 0.1 Led

- Solutions similar to slim disc but obtained at lower mdot
- Combination of local quasi-thermal spectra mimic high low-Te comptonization spectra

Marcel et al. 2018 A&A in press

Modelling an outburst of GX339-4

Marcel et al. 2018 in preparation

Radiation cooling in truncated geometry

Depends on exact geometry of hot flow

Depends on details of disc to hot flow transition and other possible complications

Poutanen, Veledina & Zdziarski 2018

The e⁺-e⁻ pair thermostat

Photons above 511 keV may interact with X-ray radiation field to produce e+-e- pairs

The pair production rate increases with source compactness:

$$l_{dis} = \frac{L_h \sigma_T}{Rm_e c^3}$$

- Pairs annihilate. At equilibrium, Thomson depth regulated by: production rate = annihilation rate
- This sets a minimum optical depth (and Maximum temperature) achievable for a given geometry

Evidence for pair dominated coronae

- Size of corona obtained from relativistic line profiles, disc reflection time-lags, or micro-lensing.
 - + observed luminosity \rightarrow estimates of compactness I_{dis}
- In many sources the data suggest compact coronae 2 Rg <r_{co}< 10 Rg, implying I_{dis}>10.
- Plasma temperature estimated from high energy cut-off

Fabian et al. 2016

Pair dominated hybrid thermal-non thermal model

Pair yield dramatically increased by energetic non-thermal leptons
—> lower Te for the same compactness

Coppi et al. 1999; Fabian et al. 2017

Consequences for coronal models

Standard two-temperature hot accretion flow solutions cannot be pair dominated (Esin et al. 1999)

Alternative hard state model: Accretion disc corona outflowing with mildly relativistic velocity above a cold (i.e. non-radiating) thin disc

(Beloborodov 1999; Malzac, Beloborodov & Poutanen 2001, Merloni & Fabian 2001)

If the corona is pair dominated, radiation pressure from the disc is enough to generate a bulk velocity v~c/2 (Beloborodov 1999)

Conclusions

- In X-ray binaries truncated disc geometry is favoured (physically motivated and observationally relevant)
- JED solutions solve the problem of luminous hard state sources (and account for jets)
- Pair production could be important in many sources