

Deep X-ray view of the bare nucleus Seyfert Ark 120: unveiling the core of AGN

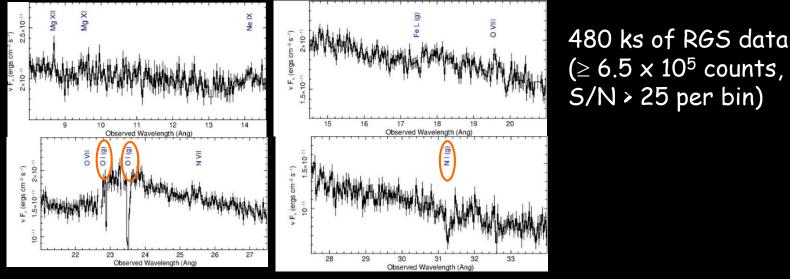
Delphine Porquet

Laboratoire d'Astrophysique de Marseille, CNRS, CNES, France

J. Reeves, A. Lobban, V. Braito, E. Nardini, C. Done, ... G. Matt, A. Marinucci, the Nustar AGN team, ... Deepest X-ray observations of a « bare » AGN: Ark 120

Ark 120: brightest and cleanest bare AGN (z~0.033)

- No intrinsic reddening in its IR/optical continuum.
- No absorption signature in X-rays and UV: no warm absorber on the line of sight
- \Rightarrow direct view of the inner part of the accretion disc
- A prominent soft X-ray excess and a possible relativistic FeK line...


An extensive simultaneous observation campaign in March 2014:

Large XMM-Newton Program of 480 ks (OM, RGS, EPIC) (PI: D. Porquet; ~5.5 days) over 4 consecutive orbits March 18-24. Highest S/N data and longest elapsed time observation for a bare AGN.

+ 120ks Chandra/HETG observation (PI: D. Porquet) First Chandra observation of Ark 120.

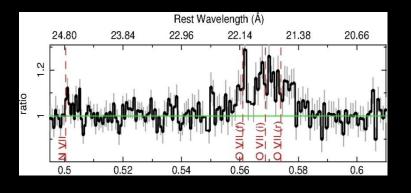
+ 65ks Nustar observation performed during the 3rd XMM-Newton observation (PI: Nustar AGN team; 65ks)

A very deep RGS observation Ark 120 (Reeves et al. 2016, Paper I)

S/N > 25 per bin)

Only neutral absorption lines from the Galactic ISM

- ✓ No ionized absorption line from Ark 120
 - \rightarrow No warm absorber on the line of sight
 - \rightarrow Confirmation of the "bare" characteristic of Ark 120


BUT several ionized emission lines from H-like and He-like ions (N, O, Ne, Mg) from Ark 120

Observed for the first time for a bare AGN at high S/N!

A very deep RGS observation Ark 120 Reeves et al. (2016, Paper I)

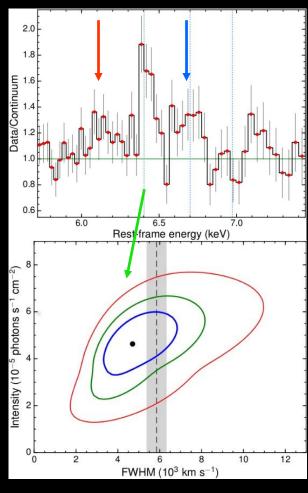
The emission ionized lines from Ark 120 :

- H-like line profiles are narrow and unresolved \rightarrow pc scale (NLR)
- He-like line profiles are velocity broadened

- ✓ A blend of narrow lines can be ruled out
- Can be fitted by a blend of velocity broadened lines with a common velocity of ~ 4600 km/s (BLR= 5800 km/s),

 \rightarrow sub-pc scale

⇒ Warm gas (~ BLR and NLR) observed out of the line-of-sight (so only observed in emission)


 \rightarrow Ark 120 is not intrinsically bare !

 \Rightarrow Ark 120 is not a peculiar AGN type but an AGN for which the l.os. does not intercept the warm absorber.

The deep view of the FeK complex: HETG + pn

Nardini et al. (2016, Paper II)

Chandra/HETG

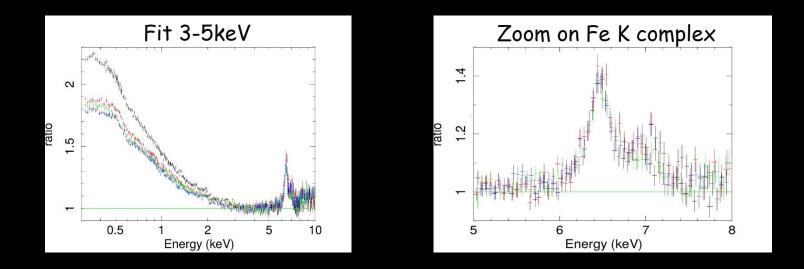
Chandra/HETG :

FeK narrow core component resolved thanks to Chandra /HETG:

 $E = 6.42 \pm 0.02 \text{ keV}$

Width = 43 (+22,-15) eV FWHM = 4700 (+2700, -1500) km/s ≈ BLR (FWHM ~ 5800-6100 km/s)

+ Red and blue emission features :


~ 6.13 keV, σ ~ 83 eV ~ 6.68 keV, σ ~ 64 eV

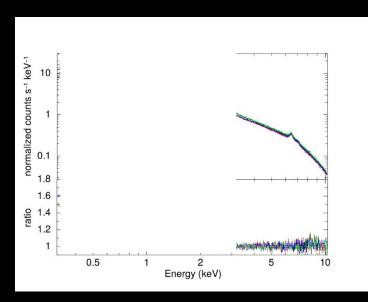
 \rightarrow broad

+ variable on short time-scale (pn energy-time map);
~ 30-50 ks (~ 10-15 hours)

 \rightarrow Located at 10s R_g from BH

The four consecutive pn observations Ark 120 (Porquet et al. 2018a, Paper IV)

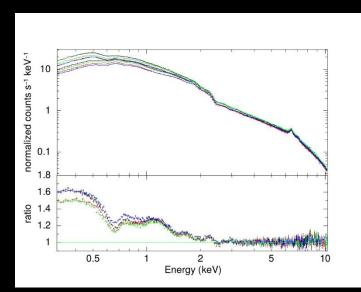
 $<\Gamma>=1.87 \pm 0.02$: typical for a radio-quiet quasar.

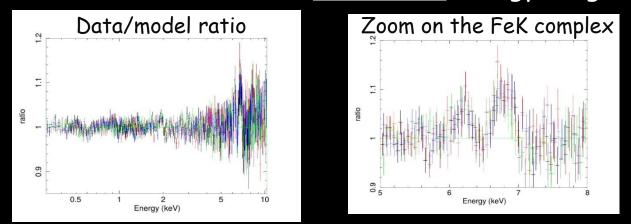

A prominent variable smooth soft excess, and a significant FeK complex

 \rightarrow Confirmation of previous XMM-Newton and Suzaku observations (e.g., Vaughan et al. 2004, Patrick et al. 2011, Nardini et al. 2011, Walton et al. 2013, *Matt et al. 2014*)

The four consecutive pn observations Ark 120 (Porquet et al. 2018a, Paper IV)

 Fit of the four pn spectra <u>above 3 keV</u> with a relativistic reflection model (relxill: Dauser et al., Garcia et al.) (+ BLR FeK emissions)


→ Very good statistical fit ($\chi 2_{(reduced)} \sim 1$): $\Gamma \sim 1.9$, small reflection fraction ~ 0.5 BUT either very flat disk emissivity index $q \leq 1.1$ for $R_{in} = ISCO$ or $R_{in} \geq 56 R_{q}$ ($R_{q} = GM/c^{2}$) assuming a standard q = 3

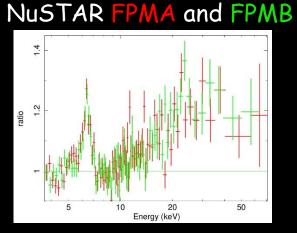

The four consecutive pn observations Ark 120 (Porquet et al. 2018a, Paper IV)

 Fit of the four pn spectra <u>above 3 keV</u> with a relativistic reflection model (relxill: Dauser et al., Garcia et al.) (+ BLR FeK emissions)

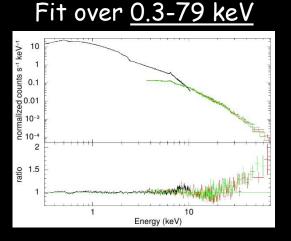
→ Very good statistical fit ($\chi 2_{(reduced)} \sim 1$): $\Gamma \sim 1.9$, small reflection fraction ~ 0.5 BUT either very flat disk emissivity index $q \leq 1.1$ for $R_{in} = ISCO$ or $R_{in} \geq 56 R_q$ ($R_q = GM/c^2$) assuming a standard q = 3

When extrapolated down to 0.3 keV the soft X-ray excess is not accounted for The four consecutive pn observations Ark 120 (Porquet et al. 2018a, Paper IV) Fit with relxill over the <u>0.3-10 keV</u> energy range:

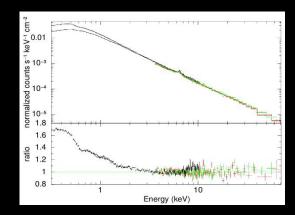
To fit the featureless soft excess: extreme and fine-tuned values are required:


Spin ~ 0.97 reflection fraction ~ 10, $q_1 \sim 7-8$, $\Gamma \sim 2.4-2.5 \neq$ From fit above 3 keV : R ~ 0.4-0.5, $q \leq 1.1$, $\Gamma \sim 1.9$

 \rightarrow red and blue emission disk features still present !

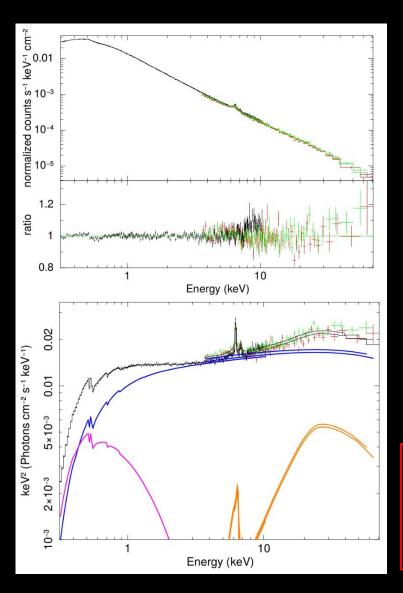

Due to a more complex disk emissivity shape (twice broken powerlaw shape), or ionization gradient, or lamppost geometry, ... ? NO

 \Rightarrow Relativistic reflection models cannot simultaneously account for both the soft X-ray excess and the FeK red and blue disk features.


Broad-band X-ray view on 2014 March 22: pn + Nustar (Porquet et al. 2018a, Paper IV)

⇒ Prominent FeK complex+ hard X-ray « hump »

Fit above 3keV and extrapolation


 \rightarrow Soft X-ray excess is not accounted for

 \Rightarrow X-ray excess above 30 keV

Relativistic reflection emission not able to account for both the soft and hard X-ray excesses

whatever models used (emissivity shape, ionization gradient, geometry, density,).

Broad-band X-ray view on 2014 March 22: pn + Nustar (Porquet et al. 2018a, Paper IV)

Best fit model:

- « Soft » Comptonization (comptt)
- kTe ~ 0.5 keV optical depth ~ 9
- \rightarrow Warm optically thick corona
- « Hard » Comptonization (cutoff PL) Hot optically thin corona $\Gamma \sim 1.9$
- Relativistic reflection (relxill)

 $R_{in} \sim 26 R_g$

 \Rightarrow 2014 X-ray spectra dominated by warm and hot Comptonization + relativistic reflection at 10s R_g