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Observations of accreting sources

X-ray binaries: Zhang +00, GRS 19151+105
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Observations of accreting sources

X-ray binaries: Kolehmainer +11, GX 339-4
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Observations of accreting sources

Seyfert galaxies: Jin +12, J112328+052823, PG 1415+451
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Observations of accreting sources

ULX sources: Walton +15, Holmberg Il X-1
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Radiative transfer equation, Rézanska +08
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Emission coefficient j, is the sum
of three terms, j, = jt" + js¢ + jf.
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Radiative transfer equation, Rézanska +08
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Radiative transfer equation, Rézanska +08
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o EoS - usually ideal gas
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Model atmosphere calculations - glossary of terms

O Specific intensity /,, which flows through one cm? on the
surface of an emitter into a direction. It is an intrinsic
property of the source in erg cm™2 s~ Hz=1 sr— L.
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Model atmosphere calculations - glossary of terms

O Specific intensity /,, which flows through one cm? on the
surface of an emitter into a direction. It is an intrinsic
property of the source in erg cm™2 s~ Hz=1 sr— L.

O Energy dependent flux is the average of I, weighted by cos 6
(zenithal angle). Integration is over full solid angle 47

F, = fl,,dw

It is an intrinsic property of the source in erg cm™2 s~ Hz 1.
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Model atmosphere calculations - glossary of terms

O Specific intensity /,, which flows through one cm? on the
surface of an emitter into a direction. It is an intrinsic
property of the source in erg cm™2 s~ Hz=1 sr— L.

O Energy dependent flux is the average of I, weighted by cos 6
(zenithal angle). Integration is over full solid angle 47

F, = fl,,dw

It is an intrinsic property of the source in erg cm™2 s~ Hz 1.

Q Infinitesimal energy dF, can be measured by a distant
observer in flat space, over infinitesimal part of full solid angle

dF, = l,dw,

subtended by the area as seen by an observer. It is NOT an
intrinsic property of the source in erg cm™2 s~ ! Hz 1.
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Spherically symmetric stars - ideal model of NS

To Observer

Rxs\? (1 Rxs )2
=or (25 Lupdu=(—22) F,
FuNS W( b) ) /0 pdp ( b )

The observed intensity per detector area is proportional to the flux
emitted locally from 1 cm? of the star’s surface, only due to the
spherical shape of the emitting region. Mihalas 1976.
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Axially symmetric accretion disk - Shakura & Sunyaev 1973

To Observer

9/ Rout
Fyap = / dw = 27500 / I,RdR,
D2 Rin

Monochromatic intensity, /, emitted in the specific direction is
integrated over the disk surface from the inner to outer disk radii.
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Accretion disk
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LMXB at different viewing angles, Rézanska
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X-ray observations of XTE J1709-267 by XMM-Newton

XTE J1709-267 MOS unfolded data
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NUSTAR/XMM-Newton data of ULXs, Rézanska

data and folded model data and folded model
s
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Fig. 1. Normalized counts from all detectors used in our spectral fitting analysis for P13, ULX1, and ULXS5 respectively. Black and red crosses
correspond to the XMM-Newton detectors EPIC-pn and EPIC-MOS. Green and blue crosses are data from NuSTAR FPMA and FPMB respectively.
Black solid lines are the best fitted models.
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Fig. 2. Upper panels shows unfolded photon spectra from all detectors used in our spectral fitting analysis, while lower panels present the ratio i.e.
data divided by model. All colors have the same meaning as in Fig. m
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NUSTAR/XMM-Newton data of ULXs, Rézanska +18

Unfolded Spectrum Unfolded Spectrum Unfolded Spectrum
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Fig. 3. Unfolded cnergy spectrum from all detectors used in our spectral fitting analysis. £ = Fi; quantity is plotted to show the maximum cmission
from hard energy tail which is associated with the emission. Black and red crosses correspond to the XMM-Newron detectors EPIC-pn and EPIC-
MOS. Green and blue crosses are data from NuSTAR FPMA and FPMB respectively. Black solid lines are the best fitted models.

The single model consists of two emitting regions with mutual
attenuation taken into account. The statistic is extremely good:

Src. Name NGC7793 P13 NGC5907 ULX1 Circinus ULX5
x> 1.08 1.01 1.14
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Fitting parameters with the tbnew*nsmcbb model.

Src. Model Parameter  Value Unit
P13 tbnew Ny 4.7715 % x 102 cm—2
nsmcbb  Temt NS 1.8194+0.025 x10° K
nsmcbb  Tiy 1.21519%% x 107 K
nsmcbb 6’ 10 +6.59 deg
nsmcbb N 8.62+0.54 x107% -
ULX1 tbnew Ny 4.457073 x 102 cm~2
nsmcbb  Tom NS 177675971 x 107 K
nsmcbb  Tin 9.014128% x 106 K
nsmcbb 0’ 70 +£1.87 deg
nsmcbb N 2.337970 x 1070 -
ULX5 tbnew Ny 597700 x 10 cm~2
nsmcbb  Tom Ns 1.63375117 x 107 K
nsmcbb  Tin 1.261193% x 107 K
nsmcbb 0’ 12.49th’}77‘1 deg
nsmcbb N 15.234£0.94 x 10~° -
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Distance from the model normalization, Rézanska +18

Src. Parameter Value Unit

P13 x?2/dof 1344/1245 -
Fx (2-10 keV) 436 x10712  ergs ! cm—2
Fx(0.3-30 keV)  6.83 x1072  ergs—!cm—2

D =10/VN 3.417% 14 Mpc
Lx(0.3-30 keV)  9.59 x10% erg s—!
ULXT  x?/dof 867,859 -

Fx (2-10 keV) 1.73x 1072  ergs~!cm™?
Fx(0.3-30 keV) 2.81x 1072 ergs~tcm—2

D=10/VvN 6.5570% Mpc
Lx(0.3-30 keV)  1.49 x 10%° erg s—1
ULX5  x?/dof 872/762 -

Fx(2-10 keV) 578 x 10712 ergs™! cm~?

Fx(0.3-30 keV) 9.18 x 10712 ergs~! cm—2
0.05

D =10/vV/N 2.604:0_03 Mpc

Lx(0.3-30 keV)  7.49 x 10%° erg s—1
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Distance from the model normalization, Rézanska +18

In case of two ULXs the distant determination from our method
agrees with previous measurements:

Src. Name NGC7793 P13 NGC5907 ULX1 Circinus ULX5
D [Mpd]  3.41191} 6.5579-59 2.6070.53
Previous 39 C 13 T. 4 T.
distances 34 C. 17 T. 2.79 RV.
Method Cepheid Tully Radial Vel.
Ref. Pietrzynski +10 Tully +16 Koribalski +04
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© ULXs may contain hot neutron star in the center. Proper
integration over emitting region containing two systems NS
and AD, provides excellent fit.

© The successful fit with single model component allows for
distant determination.

@ The model should be used in case of X-ray binaries and AGN
with proper definition of second emitting region as hot corona.
Of course assuming that the first one is an AD.

© Our model does not include ray tracing and radiative transfer
calculation. We aimed to show purely geometrical effect.

O The more general result is that any double bump observed in
X-ray domain may be an evidence of two emitting regions and
non-spherical source geometry.
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THANK YOU
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