The ISM in Dusty Star Forming Galaxies at $\mathbf{z = 1 - 3}$
 Julie Wardlow
 Dark Cosmology Centre, University of Copenhagen

Dusty star formation as a crucial phase of galaxy evolution

(c) Interaction/"Merger"

- now within one halo, galaxies interact \&
lose angular momentum
SFR starts to increase
- stellar winds dominate feedback
- rarely excite QSOs (only special orbits)
(b) "Small Group"

- halo accretes similar-mass companion(s)
- can occur over a wide mass range - Mulo still similar to before: dynamical friction merges the subhalos efficiently
(a) Isolated Disk

- halo \& disk grow, most stars formed - secular growth builds bars \& pseudobulges "Seyfert" fueling (AGN with Ms>-23)
- cannot redden to the red sequence
(d) Coalescence/(U)LIRG

- galaxies coalesce: violent relaxation in core - gas inflows to center:
starburst \& buried (X -ray) AGN
- starburst dominates luminosity/feedback, but, total stellar mass formed is small
(e) "Blowout"

- BH grows rapidly: briefly dominates luminosity/feedback remaining dust/gas expelled
- get reddened (but not Type II) QSO: recent/ongoing SF in host high Eddington ratios
high Eddington ratios
merger signatures still visible

(f) Quasar

- dust removed: now a "traditional" QSO - host morphology difficult to observe: tidal features fade rapidly
- characteristically blue/young spheroid
(g) Decay $/ K+A$

- QSO luminosity fades rapidly
- tidal features visible only with
very deep observations remnant reddens rapidly $(\mathrm{E}+\mathrm{A} / \mathrm{K}+\mathrm{A})$
Thot halo" from feedback
- sets up quasi-static cooling
(h) "Dead" Elliptical

[^0]- halo grows to "large group" scales:
mergers become inefficient
- growth by "dry" mergers

Massive ellipticals formed early in the Universe

ickox, JW et al. 2012
Toft et al. 2014

Faded DSFGs have brightness distributions consistent with nearby ellipticals

Simpson, JW et al. 2014

Gravitational Lensing

- Background galaxy: flux boost
- Background galaxy: spatial resolution boost
- Foreground galaxy: mass profile
- Cosmology: numbers and distribution of lensing

Lensed galaxies are readily identifiable in wide far-IR data

HerMES lens candidates: $S_{500}>100 \mathrm{mJy}$

Candidates: $\sim 0.15 \mathrm{deg}^{-2}$
Wardlow et al. 2013

HerMES lens candidates

$S_{500}>100 \mathrm{mJy}$ \& no blazars or local spirals $\underset{ }{ }-$

Candidates: $\sim 0.15 \mathrm{deg}^{-2}$

Wardlow et al. 2013

Lensed SMGs are easily distinguished from lenses

HerMES Boötes image

Herschel $250,350,500 \mu \mathrm{~m}$

A sample of Herschel lens systems in submm \& NIR

Calanog, JW et al. 2014 Bussmann, JW et al. 2014

Herschel PACS OT2 survey of 13 lenses: targets

Spinoglio et al. 2009

All targets have apparent $\mathrm{L}_{\text {FIR }}>10^{13} \mathrm{~L}$ 。

GI2.v2.43 $160 \mu \mathrm{~m}$

Examples of the spectroscopy

No [OIV]26 $\mu \mathrm{m}$ (AGN tracer) in most DSFGs, but evidence of [Sill]34 $\mu \mathrm{m}$ (PDRs) \& [OIII]52 (HII regions)

Summary

Wide-area, submm surveys can efficiently identify strongly lensed dusty star-forming galaxies by simply selecting the brightest sources.

Our PACS survey is breaking new ground detecting many fine structure lines at $\mathrm{z}>1$.

The lensing amplification makes studies of faint features possible.

The fine structure lines confirm IR emission dominated by HII regions and PDRs (star formation)

[^0]: - star formation terminated
 - large $\mathrm{BH} /$ spheroid - efficient feedback

