

The ISM in Dusty Star Forming Galaxies at *z*=1–3

Julie Wardlow

Dark Cosmology Centre, University of Copenhagen

Dusty star formation as a crucial phase of galaxy evolution

(c) Interaction/"Merger"

- now within one halo, galaxies interact & lose angular momentum
- SFR starts to increase
- stellar winds dominate feedback
- rarely excite QSOs (only special orbits)

(b) "Small Group"

M66 Group - halo accretes similar-mass companion(s) - can occur over a wide mass range - Mhalo still similar to before: dynamical friction merges the subhalos efficiently (a) Isolated Disk

- halo & disk grow, most stars formed
- secular growth builds bars & pseudobulges
- "Seyfert" fueling (AGN with M8>-23)

- cannot redden to the red sequence

(d) Coalescence/(U)LIRG

- galaxies coalesce: violent relaxation in core - gas inflows to center:
- starburst & buried (X-ray) AGN starburst dominates luminosity/feedback,

1000

100

10

0.1

3

logiol Laso / 10

9

-2

[Ma yr⁻¹]

SFR

but, total stellar mass formed is small

С

-1

def

0

Time (Relative to Merger) [Gyr]

σ

IRAS Quasar Hosts

(e) "Blowout"

- BH grows rapidly: briefly dominates luminosity/feedback - remaining dust/gas expelled
- get reddened (but not Type II) QSO: recent/ongoing SF in host high Eddington ratios merger signatures still visible

2

(f) Quasar

- dust removed: now a "traditional" QSO - host morphology difficult to observe: tidal features fade rapidly
- characteristically blue/young spheroid

(g) Decay/K+A

- star formation terminated - large BH/spheroid - efficient feedback - halo grows to "large group" scales:

mergers become inefficient

- growth by "dry" mergers

Hopkins et al. 2008

Massive ellipticals formed early in the Universe

Faded DSFGs have brightness distributions consistent with nearby ellipticals

Simpson, JW et al. 2014

Gravitational Lensing

- Background galaxy: flux boost
- Background galaxy: spatial resolution boost
- Foreground galaxy: mass profile
- Cosmology: numbers and distribution of lensing

Lensed galaxies are readily identifiable in wide far-IR data

See also Blain et al. 1996

HerMES lens candidates: S500>100mJy

Candidates: ~0.15 deg⁻²

Wardlow et al. 2013

HerMES lens candidates S₅₀₀>100mJy & no blazars or local spirals

Wardlow et al. 2013

The ISM in DSFGs at z=1-3

Julie Wardlow

Lensed SMGs are easily distinguished from lenses

HerMES Boötes image

A sample of Herschel lens systems in submm & NIR

Herschel PACS OT2 survey of 13 lenses: targets

All targets have apparent L_{FIR}>10¹³L_☉

Examples of the spectroscopy

No [OIV]26µm (AGN tracer) in most DSFGs, but evidence of [Sill]34µm (PDRs) & [OIII]52 (HII regions)

Summary

Wide-area, submm surveys can efficiently identify strongly lensed dusty star-forming galaxies by simply selecting the brightest sources.

Our PACS survey is breaking new ground detecting many fine structure lines at z>1.

The lensing amplification makes studies of faint features possible.

The fine structure lines confirm IR emission dominated by HII regions and PDRs (star formation)

