Properties of Interstellar Medium in Star-Forming Galaxies at z~1.4 revealed with ALMA

(Seko et al. to be submitted soon!)

Akifumi Seko

Kyoto University (D2) JSPS Research Fellow

<u>collaborators</u>
 Kouji Ohta (Kyoto University)
 Bunyo Hatsukade (NAOJ)
 Kiyoto Yabe (Kavli IPMU of Tokyo)

Peak of SFRD

galaxies evolve by transforming gas into stars

star formation rate density peaked at z~2

main sequence of galaxies

- most of star-forming galaxies are located

Madau & Dickinson 2014, ARA&A, 52, 415

ISM in MS galaxies at z=1-3

CO observations of main-sequence galaxies at z~2

- gas mass/gas mass fractions (f_{gas}) are higher than those in local spiral galaxies
- f_{gas} decreases with M_\bigstar

Dust observations of mainsequence galaxies up to z~2

 dust temperature is 25-35 K in all redshifts

Importance of metallicity

Sample

- 20 star-forming galaxies at z~1.4 with known metallicity in the SXDS field
 - Ha, [NII] lines are observed with Subaru/FMOS \rightarrow metallicity

Observations

- · ALMA
- Aug / 2012 (Cycle0)
- observing line : CO(J=5-4)
- observing frequency : 221-254 GHz (Band-6)
- Tsys : 66-100 K
- on-source time
- : 8-15 min (for a galaxy)

noise level

: 0.5-1.1 mJy/beam (50 km/s binning)

Phase re-calibration

offset from the positions in optical images

left: ALMA right: B-band

→ the coordinates of the phase calibrator were turned out to be wrong!

We re-calibrated with the corrected coordinates

Results | line profiles

We detect CO emission from 11 galaxies!

Detected sources

CO lines tend to be detected for galaxies with more massive/ higher SFR

No clear dependence on metallicity is seen

L'co(5-4) vs M*/metallicity

Molecular gas mass

CO(5-4)/CO(1-0) ratio

$$\frac{\int S_{\rm CO(5-4)} dv}{\int S_{\rm CO(1-0)} dv} \sim 6$$

Carilli & Walter 2013, ARA&A, 51, 105 Daddi et al. 2014, arXiv:1409.8158

CO-to-H₂ conversion factor

- metallicity dependence

$$M(\mathrm{H}_{2}) = \alpha \times L'_{\mathrm{CO}(1-0)}$$

Mgas/fgas VS M★

- M_{gas} is larger than the typical value in local spiral galaxies
- M_{gas} seems to depend on stellar mass

- f_{gas} is larger than the typical value in local spiral galaxies
- f_{gas} decreases with M_{\bigstar}

Mgas/fgas vs metallicity

M_{gas} does not seem to depend on metallicity

fgas decreases with metallicity

Chemical evolution model

$$\frac{dM_{\text{gas}}}{dt} = -(1-R)\psi(t) + \frac{f_i(1-R)\psi(t)}{\text{inflow}} - \frac{f_o(1-R)\psi(t)}{\text{outflow}}$$

$$\frac{d(ZM_{\text{gas}})}{dt} = -(1-R)\psi(t)Z(t) + y_Z(1-R)\psi(t) + \frac{f_i(1-R)\psi(t)Z_A(t)}{\text{inflow}} - \frac{f_o(1-R)\psi(t)Z(t)}{\text{outflow}}$$

inflow

galaxy

outflow

- considering star-formation, inflow and outflow
 - assuming the inflow and outflow rate are proportional to star-formation rate
- analytic solutions can be expressed as a function of f_{gas}

$$Z = \frac{y_Z}{f_i} \left(1 - \left[(f_i - f_o) - (f_i - f_o - 1)\frac{1}{f_{\text{gas}}}\right]^{\frac{f_i}{f_i - f_o - 1}}\right)$$

Chemical evolution model

Continuum map

Dust mass

Gas-to-Dust Ratio

GDR - metallicity stacking analysis t **Gas-to-Dust Ratio 10**³ † † 0.55dex ♦ **♦** z=1.4 **10**² **z=0** Rémy-Ruyer et al. (2014) **Cartering Series 4** Leroy et al. (2011) 8.6 8.2 8.4 8.8 9.0 8.0 metallicity

 GDR seems to decrease with metallicity (The same trend as local galaxies)

 GDR is ~3-4 times larger than the local values

Summary

- We conducted CO(5-4) observations of 20 star-forming galaxies with known metallicity at $z\sim1.4$ with ALMA
- \cdot We found correlation between f_{gas} and $M_\bigstar/metallicity$
 - however, it is difficult to say whether these correlations are mainly caused by M_\bigstar or metallicity
- By comparing the analytic chemical evolution model, we try to constrain inflow/outflow rate
 - inflow rate = $1.7 \times SFR$, outflow rate = $0.4 \times SFR$
 - close to equilibrium model?
- Gas-to-Dust Ratio seems to depend on metallicity at high redshift
 - 3-4 times larger than those in local galaxies.
 - be careful to derive M_{gas} from dust continuum emission