Relation between dust and gas in the LMC and SMC: Probing dust evolution between ISM phases

Julia Roman-Duval

Space Telescope Science Institute

GDSF2014 May 25, 2015

In collaboration with Karl Gordon, Margaret Meixner, and the HERITAGE Team

GDSF2015-J. Roman-Duval

Evidence for dust evolution in the ISM: UV Extinction Curves

Size and composition of dust grains change with environment

GDSF2015-J. Roman-Duval

Evidence for dust evolution in the ISM: Depletions

- Fraction of metals locked up in dust grains increases with increasing density
- This increases the abundance of dust and changes its composition in molecular clouds compared to the diffuse ISM

Outline

- Dust-HI relation in the LMC and SMC
 Location of the atomic-molecular transition
 - Gas-to-dust ratio of diffuse atomic ISM
- Dust-total gas relation in the LMC and SMC
 - Degeneracies between dust evolution and COdark H₂
 - Evidence for dust evolution in the LMC

LMC Dust and Gas Surface Densities

Σ_{dust} from *Herschel* HERITAGE

- SED fitting to 100, 160, 250, 350, 500 μm
- 40" resolution
- Gordon+2014

Σ (HI) from ATCA+Parkes

- 1' resolution
- Kim+2003

I_{co} from MAGMA (MOPRA)

- Targeted survey
- 45" resolution
- Wong+2011

Final resolution: 1' or 15 pc

SMC Dust and Gas Surface Densities

Final resolution: 2.6' or 45 pc

Σ_{dust} from *Herschel* HERITAGE

- SED fitting to 100, 160, 250,
 350, 500 μm
- 40" resolution
- Gordon+2014

Σ (HI) from ATCA+Parkes

- 1.5' resolution
- Stanimirovic+1999

I_{co} from NANTEN

- Full coverage
- 2.6' resolution
- Mizuno et al. 2001

Measuring the dust abundance: Gas-to-dust ratio as a slope

$$GDR = n_{gas}/n_{dust} = d\Sigma_{gas}/d\Sigma_{dust}$$

- The GDR is the derivative/slope of the relation between dust and gas surface densities
- Also allows one to separate different phases by deriving slope in different surface density regimes

Dust – H I relation: LMC

GDSF2015-J. Roman-Duval

Dust – H I relation: SMC

Dust-Total Gas Relation

Estimating H₂: X_{co} factor

 X_{co} : empirical conversion factor between CO integrated intensity (I_{co}) and H₂ column density N(H₂) in a given region

$$X_{CO} = \frac{\overline{N}(H_2)}{\overline{I}_{CO}}$$

- X_{co} depends on spatial resolution, and many physical parameters:
 Z, G₀, τ, evolutionary and dynamical state of a GMC ...
 - X_{CO} is not well theoretically or observationally constrained (H₂ is invisible!)
- We start with estimate from Bolatto+2013:

$$\frac{X_{CO}(Z)}{X_{CO}(MW)} = 0.67 \exp\left(\frac{0.4}{Z \sum_{GMC,100}^{\sim 1}}\right) \qquad \text{SMC: 5 \times MW (10^{21} \text{ cm}^{-2} \text{ K}^{-1} \text{ km}^{-1} \text{ s})}{\text{LMC: 1 \times MW (2 \times 10^{20} \text{ cm}^{-2} \text{ K}^{-1} \text{ km}^{-1} \text{ s})}$$

Dust-Total Gas Relation: SMC $X_{co} = 5 \times X_{co}(MW)$

Dust-gas slope 4x shallower in dense ISM than diffuse ISM

Dust-Total Gas Relation: SMC

 $X_{CO} = 20 \times X_{CO}(MW) \ (\Sigma_{GMC,100} = 0.6)$ No dust-gas slope variation

Interpretation: SMC

- Variations of the dust-gas slope can be due to:
 - Changes in the dust abundance (GDR)
 - Changes in the dust FIR opacity due to coagulation
 - Unaccounted for, CO-dark molecular gas

 In the SMC, variations of the dust abundance and properties are degenerate with CO-dark H₂

Dust-Total Gas Relation: LMC

 $X_{CO} = X_{CO}(MW)$

Dust-gas- slope 4x shallower in dense ISM than atomic ISM

Dust-Total Gas Relation: LMC

$$X_{CO} = 3.5 \times X_{CO}(MW) (\Sigma_{GMC,100} = 0.5)$$

Factor 2x variation in dust-gas slope between diffuse and dense ISM

Effects of dust growth on dust-gas relation

With HD simulation of 10 pc ISM parcel ($< n_H > = 200 \text{ cm}^{-3}$) in which:

- Dust abundance is set by density following Zhukovska+08
- Dust FIR opacity determined by density following Ossenkopf & Henning 1994

Interpretation: LMC

In the LMC, there is evidence for changes in the dust abundance (accretion) and/or opacity (coagulation)!

Conclusions

- In the LMC:
 - Diffuse atomic GDR = 380
 - Presence of a dust poor component (5x GDR of FIR bright regions) at very low surface densities (Σ_{dust} < 0.007 M_o pc⁻²)
 - HI-H₂ transition at $\Sigma_{dust} \simeq 0.05$ (A_V $\simeq 0.4$)
 - Evidence of a factor > 2 change in the dust-gas slope, indicative of dust evolution via:
 - Dust grain coagulation causing an increase in the dust FIR opacity, and/or
 - Accretion of gas-phase metals onto dust grains in dense ISM, increasing the abundance of dust and dust-to-gas ratio
- In the SMC:
 - Diffuse atomic GDR = 1200
 - Presence of a dust poor component (5x GDR of FIR bright regions) at very low surface densities (Σ_{dust} < 0.007 M_o pc⁻²)
 - HI-H₂ transition at $\Sigma_{dust} \simeq 0.03$ (A_V ~ 0.2)
 - At 45 pc resolution, changes in the dust-gas slope are degenerate with COdark H₂ in the translucent envelopes of molecular clouds

Impact for star formation studies

Estimating H₂ from dust to study star formation law: beware of GDR variations in GMCs!

$$\Sigma(H_2) = GDR \Sigma_{dust} - \Sigma(HI)$$

Measured in diffuse ISM (no H_2), but not necessarily applicable in H_2 dominated regions.

May be overestimated by factor ~2 n GMCs due to coagulation

- Variations in dust abundance, size, and composition may affect the physical conditions in GMCs (radiative transfer, chemistry, thermal balance)
 - There may be more dust shielding in GMCs than assumed with constant GDR
 - H₂ formation rate on dust grains may be higher
 - Extinction curves vary in GMCs, in particular ratio of A_V to $A_{1000 \text{ Å}}$
 - These variations should be included in models

Back-up slides

Theoretical constraints on dust coagulation

• Coagulation timescale:

$$t_{coag} = \frac{573 \ Myr}{n_{gas}} \frac{GDR}{150}$$
 Kohler+2012

t _{coag}	Diffuse (n~1 cm ⁻³)	Translucent (n~50 cm ⁻³)	Dense (n~1000 cm⁻³)
LMC	1.5 Gyr	30 Myr	1.5 Myr
SMC	5 Gyr	100 Myr	5 Myr

- Unlikely coagulation occurs in SMC on GMC scales, except in very dense cores (n>5000 cm⁻³)
- Coagulation may well affect the dust surface density estimate on GMC scales in the LMC

Effects of dust coagulation

Silicate BG + VSG

Coagulation can increase the FIR emissivity of dust grains by a factor ~ 2 or more

Kohler+2012

Theoretical constraints on accretion

Accretion timescale for MgSiO₃ (limiting element = Mg)

$$\tau_{j,gr} = 46 \text{ Myr}$$

$$\times \frac{\nu_{j,c} A_{j,m}^{\frac{1}{2}}}{A_{j,c}} \left(\frac{\rho_{c}}{3 \text{ g cm}^{-3}} \right) \left(\frac{3.5 \times 10^{-5}}{\epsilon} \right) \left(\frac{10^{3} \text{ cm}^{-3}}{N_{\text{H}}} \right) Zhukovska+2008$$

$$0.05 \qquad 1 \qquad 1.2/3.7 \text{ (LMC/SMC)}$$

t _{coag}	Diffuse (n~1 cm⁻³)	Translucent (n~50 cm⁻³)	Dense (n~1000 cm⁻³)
LMC	3 Gyr	60 Myr	3 Myr
SMC	10 Gyr	200 Myr	9 Myr

- Unlikely accretion occurs in SMC on GMC scales, except in very dense cores (n>5000 cm⁻³)
- Accretion may change the GMC scale gas-to-dust ratio in the LMC

Gas-to-dust ratio variations via accretion

Depletion fraction at t=5 Myr (~1/2 GMC lifetime)

$$f(t) = \frac{f_0 e^{t/\tau_{gr}}}{1 - f_0 + f_0 e^{t/\tau_{gr}}} Zhukovska+2008$$

• For τ_{gr} , assume density scales with surface density as n $\alpha \Sigma^3$ - n =1, 50, 1000 cm⁻³ for Σ = 20, 50, 200 M_{\odot} pc⁻² (Snow+2006)

GDSF2015-J. Roman-Duval

- Physical processes that can change the dust-gas slope:
 - True dust abundance (gas-to-dust ratio) variations by accretion of gas-phase metals onto dust grains or other processes (e.g., dust grain clustering by turbulence...)
 - Coagulation, by increasing emissivity of coagulated big grains in molecular clouds, leading to overestimate of dust surface density since constant emissivity is assumed
 - Dark (probably molecular) gas: CO-dark H₂ in beam should be accounted for by use of higher than Galactic X_{co}
 - CO saturation: CO saturation could lead to a decrease of dust-gas slope at highest surface density if constant X_{co} is assumed
 - Although not expected at metallicity of LMC, SMC (Shetty+2011)
- PROBLEM: All of these effects are degenerate and lead to a decrease of observed dust-gas slope with increasing surface density !!!!

- Physical processes that can change the dust-gas slope:
 - True dust abundance (gas-to-dust ratio) variations by accretion of gas-phase metals onto dust grains or other processes (e.g., dust grain clustering by turbulence...)
 - Coagulation, by increasing emissivity of coagulated big grains in molecular clouds, leading to overestimate of dust surface density since constant emissivity is assumed
 - Dark (probably molecular) gas: CO-dark H₂ in beam should be accounted for by use of higher than Galactic X_{co}
 - CO saturation: CO saturation could lead to a decrease of dust-gas slope at highest surface density if constant X_{co} is assumed
 - Although not expected at metallicity of LMC, SMC (Shetty+2011)
- PROBLEM: All of these effects are degenerate and lead to a decrease of observed dust-gas slope with increasing surface density !!!!

- Physical processes that can change the dust-gas slope:
 - True dust abundance (gas-to-dust ratio) variations by accretion of gas-phase metals onto dust grains or other processes (e.g., dust grain clustering by turbulence...)
 - Coagulation, by increasing emissivity of coagulated big grains in molecular clouds, leading to overestimate of dust surface density since constant emissivity is assumed
 - Dark (probably molecular) gas: CO-dark H₂ in beam should be accounted for by use of higher than Galactic X_{CO}
 - CO saturation: CO saturation could lead to a decrease of dust-gas slope at highest surface density if constant X_{co} is assumed
 - Although not expected at metallicity of LMC, SMC (Shetty+2011)
- PROBLEM: All of these effects are degenerate and lead to a decrease of observed dust-gas slope with increasing surface density !!!!

- Physical processes that can change the dust-gas slope:
 - True dust abundance (gas-to-dust ratio) variations by accretion of gas-phase metals onto dust grains or other processes (e.g., dust grain clustering by turbulence...)
 - Coagulation, by increasing emissivity of coagulated big grains in molecular clouds, leading to overestimate of dust surface density since constant emissivity is assumed
 - Dark (probably molecular) gas: CO-dark H₂ in beam should be accounted for by use of higher than Galactic X_{co}
 - CO saturation: CO saturation could lead to a decrease of dust-gas slope at highest surface density if constant X_{co} is assumed
 - Although not expected at metallicity of LMC, SMC (Shetty+2011)
- PROBLEM: All of these effects are degenerate and lead to a decrease of observed dust-gas slope with increasing surface density !!!!