

Modelling the observed evolution of dust in galaxies

Aurélie Rémy-Ruyer

With: Suzanne Madden, Anthony Jones, Nathalie Ysard, Mélanie Köhler, Frédéric Galliano, Vianney Lebouteiller

26th May 2015

Gas, Dust and Star Formation in Galaxies - Crete

Outline

Dust and galaxy evolution

- The ISM lifecycle
 - Gas-to-dust mass ratios
- Dust-to-stellar mass ratios

A new description of dust

- Motivations for the new model
- Ingredients
- Validation on the diffuse ISM
 - Impact on the dust evolution

Outline

Dust and galaxy evolution

- The ISM lifecycle
 - Gas-to-dust mass ratios
- Dust-to-stellar mass ratios

A new description of dust

- Motivations for the new model
 - Ingredients
 - Validation on the diffuse ISM
 - Impact on the dust evolution

Dust and galaxy evolution: The ISM lifecycle

Molecular cloud

Dust and galaxy evolution: Sample

DGS : Dwarf Galaxy Survey Madden+13, Rémy-Ruyer+13

KINGFISH Kennicutt+11, Dale+12

• Wide range of starformation activity and metallicity

• ~100 sources

$\frac{G}{D}$ as a function of metallicity

See also: Lisenfeld&Ferrara+98, Hirashita+02, Draine+07, Munoz-Mateos+09, Galametz+11, Sandstrom +13, Roman-Duval+14, Grossi+15, etc.

Same « strong line » method for the whole sample

G as a function of metallicity D

See also: Lisenfeld&Ferrara+98, Hirashita+02, Draine+07, Munoz-Mateos+09, Galametz+11, Sandstrom +13, Roman-Duval+14, Grossi+15, etc.

Same « strong line » method for the whole sample

as a function of metallicity

See also: Lisenfeld&Ferrara+98, Hirashita+02, Draine+07, Munoz-Mateos+09, Galametz+11, Sandstrom +13, Roman-Duval+14, Grossi+15, etc. Use Galliano+11 model:

- MW dust: silicates+graphite+PAHs (Zubko+04)
- ISRF from Mathis+83
- Power-law distribution for radiation field intensity (Dale+01)

Atomic gas mass : HI

Molecular gas mass : H2, use X_{CO,Z} from Schruba+12

Same « strong line » method for the whole sample

as a function of metallicity

See also: Lisenfeld&Ferrara+98, Hirashita+02, Draine+07, Munoz-Mateos+09, Galametz+11, Sandstrom +13, Roman-Duval+14, Grossi+15, etc. Use Galliano+11 model:

- MW dust: silicates+graphite+PAHs (Zubko+04)
- ISRF from Mathis+83
- Power-law distribution for radiation field intensity (Dale+01)

From same dust model

$\frac{D}{S}$ as a function of SSFR

See also: Kauffmann +03, Brinchmann+04, Schiminovich+07, daCunha+10, Skibba +11, Cortese+12, etc.

From same dust model

- as a function of SSFR

See also: Kauffmann +03, Brinchmann+04, Schiminovich+07, daCunha+10, Skibba +11, Cortese+12, etc. Empirical prescription from NIR bands (Eskew+12)

From same dust model

SSFR = SFR/S SFR from H α measurements, corrected for dust attenuation with L_{TIR} (Kennicutt&Evans+12)

- as a function of SSFR

See also: Kauffmann +03, Brinchmann+04, Schiminovich+07, daCunha+10, Skibba +11, Cortese+12, etc. Empirical prescription from NIR bands (Eskew+12)

Dust and galaxy evolution: G/D and metallicity

Large scatter

Dust and galaxy evolution: G/D and metallicity

> Not coherent at low metallicities with a simple description of dust evolution in the ISM

 Chemical evolution model by Asano+13

 Chemical evolution model by Asano+13

 « Critical » metallicity over which dust growth is the main process in the dust mass evolution

 Chemical evolution model by Asano+13

 « Critical » metallicity over which dust growth is the main process in the dust mass evolution

• Depends on the star formation timescale

 Chemical evolution model by Asano+13

 « Critical » metallicity over which dust growth is the main process in the dust mass evolution

• Depends on the star formation timescale

Scatter can be explained if you account for the different star formation histories of the sources

Rémy-Ruyer+15

Rémy-Ruyer+15

High SSFR, low Z ,low M_{star}, high G/D

Dust growth: M_{dust} increases, scatter arises from different evolutionnay stages

High SSFR, low Z ,low M_{star}, high G/D

Dust growth: M_{dust} increases, scatter arises from different evolutionnay stages

High SSFR, low Z ,low M_{star}, high G/D

Dust growth: M_{dust} increases, scatter arises from different evolutionnay stages

High SSFR, low Z ,low M_{star}, high G/D

Dust growth in the ISM is fundamental

Outline

Dust and galaxy evolution

- The ISM lifecycle
 - Gas-to-dust mass ratios
 - Dust-to-stellar mass ratios

A new description of dust

- Motivations for the new model
- Ingredients
- Validation on the diffuse ISM
 - Impact on the dust evolution

A new dust model: Motivations

> Key is dust growth in the ISM...

A new dust model: Motivations

> Key is dust growth in the ISM...

... but previous model uses homogeneous grains

A new dust model: Motivations

> Key is dust growth in the ISM...

... but previous model uses homogeneous grains

	Galliano+11 based on Zubko+04, but also Draine&Li+07 and others	
Silicates	 « Astronomical silicates » Olivine-type (MgFeSiO₄) 	Draine&Lee+84, Weingartner&Draine+01, Li&Draine+01 • Modified to fit the data
Carbons	Graphites + PAHs	Laor&Draine+93, Draine&Malhotra+93, Li&Draine +01, Draine&Li+07 • No observational evidence of graphite or PAHs in the diffuse ISM

A new dust model: Ingredients

New dust grains with a « core-mantle » structure

- Optical properties derived from laboratory measurements
- Consistent with elemental abundances

	Galliano+11 based on Zubko+04, but also Draine&Li+07 and others	Jones+13 & Köhler+14
Silicates	 « Astronomical silicates » Olivine-type (MgFeSiO₄) 	Amorphous pyroxene & olivine with Fe/FeS inclusions
Carbons	Graphites + PAHs	Hydrogenated amorphous carbons

A new dust model: Caveats of previous models

Inconsistency between the emission and extinction measurements

A new dust model: Consistent extinction & emission

Explain self-consistently emission and extinction measurements

Ysard+15, Fanciullo+15 0.035 Draine&Li+07 Compiegne+11 mass 0.030 Jones+13 & Köhler+14 0.025 () 0.020 8 9 9 0.015 0.010 0.005 Ext: quasars from SDSS Em: Planck 0.000 0.5 2.0 1.0 1.5

A new dust model: Consistent extinction & emission

Explain self-consistently emission and extinction measurements

Ysard+15, Fanciullo+15 0.035 Draine&Li+07 Compiegne+11 ჯ **ი.იзი** Jones+13 na & Köhler+14 0.025 () 0.020 8) ∃ 0.015 0.010 0.005 Ext: quasars from SDSS Em: Planck 0.000 0.5 2.0 1.0 1.5 tau353 (10^-6) → mass

• Tested and validated in the diffuse ISM (Jones+13, Köhler+14, Ysard+15)

Tested and validated in the dense ISM (Köhler+15)

Global trend is still the same
Absolute scale is changing: variation of a factor of ~4 -5 in the dust mass

• Global trend is still the same

• Absolute scale is changing: variation of a factor of ~4 -5 in the dust mass

- Graphite -> Amorphous carbons: ~2 2.5
- « Astronomical » silicates -> new amorphous silicates: ~2 2.5 (mass density)

Global trend is still the same

Absolute scale is changing: variation of a factor of ~4 -5 in the dust mass

- Graphite -> Amorphous carbons: ~2 2.5
- « Astronomical » silicates -> new amorphous silicates: ~2 2.5 (mass density)

Important consequences for estimating D or G from G/D and metallicity

Summary: Take away messages

• Dust growth is the key to explain G/D and D/S

 Large scatter can be explained with different star formation histories and different evolutionary stages

Summary: Take away messages

Dust growth is the key to explain G/D and D/S

 Large scatter can be explained with different star formation histories and different evolutionary stages

> Rémy-Ruyer+14, Jones+13, Köhler+14, Ysard+15 Rémy-Ruyer et al., in prep.

• A more physically consistent description of dust

• No Graphite, No PAHs, No « Astronomical » Silicates !

Summary: Take away messages

Dust growth is the key to explain G/D and D/S

 Large scatter can be explained with different star formation histories and different evolutionary stages

> Rémy-Ruyer+14, Jones+13, Köhler+14, Ysard+15 Rémy-Ruyer et al., in prep.

A more physically consistent description of dust

- No Graphite, No PAHs, No « Astronomical » Silicates !
- Core-mantle structure : amorphous silicates and amorphous carbons
- Optical properties derived from laboratory measurements
- Consistent in size : from small to big carbon in one grain family
- Consistent with both extinction and emission together
- Tested and validated in the diffuse and dense ISM
- Imply *significant* change in the derived dust mass !

26th May 2015

Gas, Dust and Star Formation in Galaxies - Crete

Thank you !

Aurélie Rémy-Ruyer

Dust and galaxy evolution: IR wavelength coverage

Rémy-Ruyer et al. in prep

Dust evolution within the ISM

A new dust model: Validated on the diffuse ISM

Consistent with emission and extinction

Jones+13 Köhler+14

• Consistent with elemental abundance constraints

Caveats of previous models

