Gas, Dust, and Star Formation in Galaxies: From the Local to far Universe Platanias, May 2015

> Biases linked with resolution effects and the lack of wavelength coverage

Maud Galametz ESO Fellow, Garching: maud.galametz@eso.org

Herschel: A new vision on local galaxies

Gain in wavelength coverage

- 2 -

Herschel : A new vision on local galaxies

Gain in spatial resolution

<u>From</u> 70μm to 500μm <u>Resolution</u> 5.2" to 36"

V

Large Magellanic Cloud 1.3 pc to 8.7 pc <u>A galaxy at 10Mpc</u> 250 pc to 1.7 kpc

Content

I - Dust properties

- Masses

- Emissivities

II - Star formation rates

Content

I - Dust properties

- Masses

- Emissivities

II - Star formation rates

Biases in dust masses

Linked with the lack of spatial resolution

... and with an incomplete wavelength coverage

Non linearity of the SED models \rightarrow Total mass $\neq \Sigma$ local masses

Some studies and results

Galametz et al, 2012 KINGFISH galaxies

Comparison with wavelength coverage

Result: Large discrepancies No systematics

Comparison global vs local masses

Result: from 0 to 40% of missing mass

Some studies and results

In a strip across the LMC

Increase by 50% of the dust mass when the working resolution increases

Take away messages

It is a non negligible effect ! Needs to be more systematically quantify

Content

I - Dust properties

- Masses

- Emissivities

II - Star formation rates

Population mixing

→ Access to an <u>effective</u> emissivity rather than to the <u>intrinsic</u> emissivity

Biases in the emissivity

Linked with the lack of spatial resolution

... and with an incomplete wavelength coverage

- 10 -

Emissivity variations

From galaxy to galaxy ...

Galametz et al, 2012 KINGFISH sample

Boselli et al, 2012 HRS sample ... See also Auld et al, 2012 for the Herschel Virgo Cluster Survey

- 11 -

... and within one galaxy

Emissivity variations

Roman-Duval et al, 2014

<u>Take away message</u>

Applying a (random) emissivity index value is dangerous !

Content

I - Dust properties

- Masses

- Emissivities

II - Star formation rates

Biases in the star formation estimates

Dust emission = a star formation tracers

SFR = f (H α , 24 μ m) SFR = f (70 μ m) SFR = f (L_{TIR})

... however, a significant fraction of the dust emission is **not** associated with star formation

... See also Bendo et al.

Crocker et al, 2013

Deriving calibration coefficients

Take away message

Be aware of the 'diffuse' emission not related to star formation

Content

I - Dust properties

- Masses

- Emissivities

II - Star formation rates

Calibrations of IR

→ Nearby galaxies allow us to produce predictive tools to overcome the lack of wavelength coverage

 \rightarrow FIR fine-structure lines can be used to reliably trace the SFR [CII] 158 μm, [OI] 63 μm, [OIII] 88 µm...

Herrera-Camus et al. 2015

De Looze et al. 2014

Conclusions

Lack of resolution and of wavelength coverage
Non negligible effects!

Major consequences on the dust emissivities or masses, thus on the parameters derived from the dust

→ Need to be more systematically quantified

Diffuse emission not related to star formation
Understand the recipe before using it