THE METALLICITY -GAS CONTENT CONNECTION

MATT BOTHWELL, ROBERTO MAIOLINO, JEFF WAGG, Claudia Cicone

CAVENDISH ASTROPHYSICS, CAMBRIDGE

EXTENDING THE M*-Z RELATION

- Two papers in 2010: Mannucci et al. and Lara-Lopez et al.
- The scatter in the M-Z relation correlates with SFR

EXTENDING THE M*-Z RELATION

(Mannucci+10)

EXTENDING THE M*-Z RELATION

A HI FMR?

(Bothwell+13)

MOLECULAR GAS ...

- H2 is more correlated with star formation, and expected based on SFR-FMR
- BUT, statistically more challenging...

Shi et al. (2015) Low SFE at low metallicity

日本語要約

Inefficient star formation in extremely metal poor galaxies

Yong Shi, Lee Armus, George Helou, Sabrina Stierwalt, Yu Gao, Junzhi Wang, Zhi-Yu Zhang & Qiusheng Gu

Shi et al. (2015) Low SFE at low metallicity

Inefficient star formation in extremely metal poor galaxies

Yong Shi, Lee Armus, George Helou, Sabrina Stierwalt, Yu Gao, Junzhi Wang, Zhi-Yu Zhang & Qiusheng Gu

> Monthly Notices of the ROYAL ASTRONOMICAL SOCIETY

Mon. Not. R. Astron. Soc. 415, 3439-3454 (2011)

doi:10.1111/j.1365-2966.2011.18966.x

Dib et al. (2011) Low SFE at HIGH metallicity

日本語要約

Star formation efficiency as a function of metallicity: from star clusters to galaxies

Sami Dib,1* Laurent Piau,2 Subhanjoy Mohanty1 and Jonathan Braine3

¹Astrophysics Group, Blackett Laboratory, Imperial College London, London SW7 2AZ
²LATMOS, 11 Boulevard d'Alembert, 78280 Guyancourt, France
³Laboratoire d'Astrophysique de Bordeaux, Université de Bordeaux, OASU CNRS/INSU, 33271 Floirac, France

THE APEX LOW REDSHIFT LEGACY SURVEY FOR MOLECULAR GAS

ALLSMOG

THE APEX LOW REDSHIFT LEGACY SURVEY FOR MOLECULAR GAS

ALLSMOG

- Selected from SDSS, requiring a welldefined metallicity
- All spectra publicly available at <u>www.mrao.cam.ac.u</u> <u>k/ALLSMOG</u>
- Bothwell et al. (2014)

H2 AND METALLICITY

ALLSMOG

COLD GASS

HRS

SMGs

BzK

♦ LVL

H2 AND METALLICITY

ALLSMOG 42

© COLD GASS 115 © BzK 9

• HRS 24 • SMGs 9

♦ LVL 22

=

DEGENERACY

- Previous work (HI, SFR) had sample sizes of >1000s
- With large samples, you can control for degeneracy
- With smaller samples (-200), it's more difficult
- Use Principle Component Analysis

 $PC_{I} = 0.578(M^{*}) - 0.807(MH_{2}) + 0.118(Z)$ $PC_{2} = -0.759(M^{*}) - 0.585(MH_{2}) - 0.284(Z)$ $PC_{3} = 0.299(M^{*}) - 0.075(MH_{2}) - 0.951(Z)$

 $PC_{1} = 0.578(M^{*}) - 0.807(MH_{2}) + 0.118(Z) 80\%$ $PC_{2} = -0.759(M^{*}) - 0.585(MH_{2}) - 0.284(Z)$ $PC_{3} = 0.299(M^{*}) - 0.075(MH_{2}) - 0.951(Z)$

 $\begin{array}{l} PC_{I} = 0.578(M^{*}) - 0.807(MH_{2}) + 0.118(Z) 80\% \\ PC_{2} = -0.759(M^{*}) - 0.585(MH_{2}) - 0.284(Z) \\ PC_{3} = 0.299(M^{*}) - 0.075(MH_{2}) - 0.951(Z) \end{array} \right\} 98\% \\ \end{array}$

 $\begin{array}{l} PC_{I} = 0.578(M^{*}) - 0.807(MH_{2}) + 0.118(Z) 80\% \\ PC_{2} = -0.759(M^{*}) - 0.585(MH_{2}) - 0.284(Z) \\ PC_{3} = 0.299(M^{*}) - 0.075(MH_{2}) - 0.951(Z) \end{array} \right\} 98\% \\ \end{array}$

4

$PC_{3} = 0.299(M^{*}) - 0.075(MH_{2}) - 0.951(Z)$ = 0 (to within 2%)

#

$PC_3 = 0.299(M^*) - 0.075(MH_2) - 0.951(Z)$ = 0 (to within 2%)

$0.299(M^*) - 0.075(MH_2) - 0.951(Z) = 0$

=

$PC_3 = 0.299(M^*) - 0.075(MH_2) - 0.951(Z)$ = 0 (to within 2%)

$0.299(M^*) - 0.075(MH_2) - 0.951(Z) = 0$

12+log(O/H) = 0.31 (logM*) - 0.08 (log MH2) + 6.53

$PC_3 = 0.299(M^*) - 0.075(MH_2) - 0.951(Z)$ = 0 (to within 2%)

$$0.299(M^*) - 0.075(MH_2) - 0.951(Z) = 0$$

$$12 + \log(O/H) = 0.31 (\log M^*) - 0.08 (\log MH_2) + 6.53$$

- Metallicity PRIMARILY determined by stellar mass
- Secondary dependence on H2 content, effect is -1/4 as strong

$$12 + \log(O/H) = 0.31 (\log M^*) - 0.08 (\log MH_2) + 6.53$$

#

#

12+log(O/H) = 0.29 (logM*) - 0.04 (log SFR) + 6.14

$$12 + \log(O/H) = 0.31 (\log M^*) - 0.08 (\log MH_2) + 6.53$$

#

#

12+log(O/H) = 0.29 (logM*) - 0.04 (log SFR) + 6.14

$12 + \log(O/H) = 0.31 (\log M^*) - 0.08 (\log MH_2) + 6.53$

$12 + \log(O/H) = 0.29 (\log M^*) - 0.04 (\log SFR) + 6.14$

 $12 + \log(O/H) = 0.31 (\log M^*) - 0.08 (\log MH_2) + 6.53$

 $12 + \log(O/H) = 0.25 (\log M^*) - 0.007 (\log SFE) + 6.45$

#

CONCLUSIONS

- There is a H2 `Fundamental Metallicity Relation'
- Molecular gas is likely the strongest secondary correlation in the mass-metallicity relation
- There is little connection between star formation efficiency and metallicity