

Dust and Gas in high-z galaxies as seen by Herschel (and beyond)

Stefano Berta

MPE

& the PEP, HerMES, GOODS-H, etc. Teams

GDSF 2015 – Chania, Crete, May 24th-28th, 2015

<u>Overview</u>

 Far-IR observations and Herschel basic results

✓ The Gas Mass Function

✓ Deriving Gas (dust) masses

Scaling relations

✓ Uncertainties (Herschel, ALMA or ALMA+Herschel)

The FIR and Herschel, because ...

Lutz (2014), Berta et al. (2013a)

The lesser role of "starbursts"

Rodighiero et al. (2011), Sargent et al. (2012, 2013)

The lesser role of "starbursts"

Rodighiero et al. (2011), Sargent et al. (2012, 2013)

Deriving gas masses

We would now like to go a step further and study the fuel of star formation.

- 1. CO tracer -> Alpha(CO) ; still limited
 to small samples at z>0 and still time
 expensive
- 2. Derive M(gas) from t(depl) using KS
 scaling
- 3. Use scalings of other accessible
 quantities into M(gas) -> M(star),
 sSFR, ... ???

Deriving gas masses

4. Scaling sub-mm fluxes (e.g. Scoville et al. 2014, Eales et al. 2012)

5. derive M(gas) from M(dust, SED), e.g. via gas/dust scaling with metallicity (e.g. Leroy et al 2011, Magdis et al. 2012, Santini et al. 2014, Remy-Ruyer et al. 2013, Genzel et al. 2015)

100

10

8.0

8.2

8.4

Metallicity $[12 + \log (O/H)]$

8.6

8.8

9.0

The fuel of star formation

 $t_{depl}=M_{mol\ gas}/SFR=1.5 \times (1+z)^{-1}$ Gyr

(e.g. Tacconi et al. 2013, Saintonge et al. 2011,2012, Genzel et al. 2015)

The M(mol) Mass Function

1/V(access)

STY

~700 "Main Sequence" galaxies Berta et al. (2013b), see also Sargent et al. (2013)

Dust Properties along/across the <u>"Main Sequence"</u>

Magnelli et al.(2014); Using DH02 + associated T(Dust)

Dust Properties along/across the <u>"Main Sequence"</u>

Magnelli et al.(2014), see also Genzel et al.(2015)

~500 sources

Genzel et al.(2015)

CO-based

$$\begin{split} \log(M_{\text{mol gas}}/M_*(z, \text{sSFR}, M_*)|_{\alpha = \alpha_{0J}}) \\ &= \log(f_2(z)|_{sSFR = sSFR(\text{ms}, z, M_*)}) \\ &+ \log(g_2(\text{sSFR}/\text{sSFR}(\text{ms}, z, M_*))) + \log(h_2(M_*)) \end{split}$$

Genzel et al. (2015)

Using MW conversion factor

CO-based

$$\begin{split} \log(M_{\text{mol gas}}/M_*(z, \text{sSFR}, M_*)|_{\alpha = \alpha_{0J}}) \\ &= \log(f_2(z)|_{sSFR = sSFR(\text{ms}, z, M_*)}) \\ &+ \log(g_2(\text{sSFR}/\text{sSFR}(\text{ms}, z, M_*))) + \log(h_2(M_*)) \end{split}$$

Genzel et al. (2015)

Dust-based

Agreement to better than 50%!

Genzel et al.(2015)

Testing sub-mm single-band M(gas)

MBB simulation

INPUT:

- Magnelli et al. (2014) T(dust) vs z-M*-sSFR
- Genzel et al. (2015) M(gas) vs z-M*-sSFR
- Modified Black Body

OUTPUT:

• M(gas) based on Scoville et al. (2014) scaling of sub-mm flux

$$\alpha_{850\,\mu\text{m}} = \frac{L_{\nu_{850\,\mu\text{m}}}}{M_{\text{ISM}}} = 4\pi \kappa_{\text{ISM}} (\nu_{850\,\mu\text{m}}) B_{\nu}(T_d)$$

= 0.79 × 10²⁰ erg s⁻¹ Hz⁻¹ M_{\odot}^{-1} , (9)
(Valid for T(d)=25 K and Planck-based kappa(ISM))

Genzel et al. (2015)

Testing ALMA single-band M(gas)

MBB simulation

Genzel et al. (2015)

Switching to two ALMA bands (6+7)

MBB simulation

Genzel et al. (2015)

(Time expensive)

Herschel handles dust masses

DL07 Simulation,

sampling the M*-SFR space with PEP/HerMES noise

Berta et al. (in prep)

Studying our ignorance in deriving dust masses

Berta et al. (in prep.)

Based on DL07 fitting

Herschel + ALMA !

[gives an exposure time for ALMA]

Berta et al. (in prep.)

Based on DL07 fitting

34 antennas allow to observe all PACS/Herschel detected sources in GOODS-S down to M(gas)>1e10.5 Msun in few tens of hours (modulo overheads) Berta et al. (in prep.)

34 antennas allow to observe all PACS/Herschel detected sources in GOODS-S down to M(gas)>1e10.5 Msun in few tens of hours (modulo overheads) Berta et al. (in prep.)

Take home messages

- We have derived the first (and only) determination of the gas mass function at z>0 scaling Herschel-based SFR with t(depl).
- ✓ CO-based and dust-based determinations of M(gas) agree to better than 50% (for massive SFG with nearly-solar Z on the MS).
- ALMA-only and Herschel-only estimates of gas (dust) masses are affected by large uncertainties and possibly systematics.
- ✓ A combined ALMA+Herschel approach allows to measure dust (gas) masses with SN>3.
- ALMA requires few tens of hours (on source, e.g. band 7) to target all GOODS-S PACSdetected sources down to M(gas)~1e10.5 up to z~2.